首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   339篇
  国内免费   9篇
测绘学   13篇
大气科学   64篇
地球物理   459篇
地质学   208篇
海洋学   24篇
天文学   88篇
综合类   18篇
自然地理   18篇
  2023年   24篇
  2022年   57篇
  2021年   60篇
  2020年   50篇
  2019年   65篇
  2018年   250篇
  2017年   99篇
  2016年   26篇
  2015年   6篇
  2014年   4篇
  2013年   5篇
  2011年   29篇
  2010年   13篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   12篇
  2003年   4篇
  2002年   15篇
  2001年   11篇
  2000年   27篇
  1999年   45篇
  1998年   9篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   6篇
  1991年   12篇
  1990年   9篇
  1989年   6篇
  1988年   7篇
  1985年   1篇
  1976年   1篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
  1964年   2篇
排序方式: 共有892条查询结果,搜索用时 250 毫秒
11.
Garnet crystals with quartz inclusions were hydrothermally crystallized from oxide starting materials in piston–cylinder apparatuses at pressures from 0.5 to 3 GPa and temperatures ranging from 700 to 800 °C to study how entrapment conditions affect remnant pressures of quartz inclusions used for quartz-in-garnet (QuiG) elastic thermobarometry. Systematic changes of the 128, 206 and 464 cm?1</sup> Raman band frequencies of quartz were used to determine pressures of quartz inclusions in garnet using Raman spectroscopy calibrations that describe the P–T dependencies of Raman band shifts for quartz under hydrostatic pressure. Within analytical uncertainties, inclusion pressures calculated for each of the three Raman band frequencies are equivalent, which suggests that non-hydrostatic stress effects caused by elastic anisotropy in quartz are smaller than measurement errors. The experimental quartz inclusions have pressures ranging from ??0.351 to 1.247 GPa that span the range of values observed for quartz inclusions in garnets from natural rocks. Quartz inclusion pressures were used to model P–T conditions at which the inclusions could have been trapped. The accuracy of QuiG thermobarometry was evaluated by considering the differences between pressures measured during experiments and pressures calculated using published equation of state parameters for quartz and garnet. Our experimental results demonstrate that Raman measurements performed at room temperature can be used without corrections to estimate garnet crystallization pressures. Calculated entrapment pressures for quartz inclusions in garnet are less than ~?10% different from pressures measured during the experiments. Because the method is simple to apply with reasonable accuracy, we expect widespread usage of QuiG thermobarometry to estimate crystallization conditions for garnet-bearing silicic rocks.  相似文献   
12.
The behavior of nickel in the Earth’s mantle is controlled by sulfide melt–olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe–Ni composition of molten sulfide in the Earth’s upper mantle via sulfide melt–olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt \(X_{{{\text{Ni}}}}^{{{\text{Sulfide}}}}=\frac{{{\text{Ni}}}}{{{\text{Ni}}+{\text{Fe}}}}\) (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of \({f_{{{\text{O}}_{\text{2}}}}}\) on Fe–Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31–46, 1995), “zero time” experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0?±?1.0 log units more reduced than the fayalite–magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ ??1 or more oxidized (suite 4). For the reduced (suites 1–3) experiments, Fe–Ni distribution coefficients \(K_{{\text{D}}}^{{}}=\frac{{(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}/X_{{{\text{Fe}}}}^{{{\text{sulfide}}}})}}{{(X_{{{\text{Ni}}}}^{{{\text{olivine}}}}/X_{{{\text{Fe}}}}^{{{\text{olivine}}}})}}\) are small, averaging 10.0?±?5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of KD (21.1–25.2). Compared to previous determinations at 100 kPa, values of KD from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem attributable to differences in temperature and pressure between experimental studies. It may be related in part to the effects of metal/sulfur ratio in sulfide melt. Application of these results to the composition of molten sulfide in peridotite indicates that compositions are intermediate in composition (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.4–0.6) in the shallow mantle at 50 km, becomes more Ni rich with depth as the O content of the melt diminishes, reaching a maximum (0.6–0.7) at depths near 80–120 km, and then becomes more Fe rich in the deeper mantle where conditions are more reduced, approaching (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.28)?>?140 km depth. Because Ni-rich sulfide in the shallow upper mantle melts at lower temperature than more Fe-rich compositions, mantle sulfide is likely molten in much of the deep continental lithosphere, including regions of diamond formation.  相似文献   
13.
This paper investigates the origin of low-δ18</sup>O quartz porphyry dykes associated with the 144–133 Ma Koegel Fontein Igneous Complex, which was intruded during the initial phase of breakup of Africa and South America. The 25-km diameter Rietpoort Granite is the largest and youngest phase of activity, and is roofed by a 10-km diameter pendant of gneiss. Quartz porphyry (QP) dykes, up to 15 m in width, strike NW–SE across the complex. The QP dykes that intruded outside the granite have similar quartz phenocryst δ18</sup>O values (average 8.0‰, ± 0.7, n?=?33) to the granite (average 8.3?±?1.0, n?=?7). The QP dykes that intruded the roof pendant have quartz phenocrysts with more variable δ18</sup>O values (average 1.6‰, ± 2.1, n?=?55). In some cases quartz phenocrysts have δ18</sup>O values as low as ? 2.5‰. The variation in δ18</sup>O value within the quartz crystal population of individual dykes is small relative to the overall range, and core and rim material from individual quartz phenocrysts in three samples are identical within error. There is no evidence that quartz phenocryst δ18</sup>O values have been affected by fluid–rock interaction. Based on a ?quartz?magma value of 0.6‰, magma δ18</sup>O values must have been as low as ? 3.1‰. Samples collected along the length of the two main QP dykes that traverse the roof pendant have quartz phenocryst δ18</sup>O values that range from +?1.1 to +?4.6‰, and ? 2.3 to +?5.6‰, respectively. These δ18</sup>O values correlate negatively (r = ? 0.96) with initial 87</sup>Sr/86</sup>Sr, which can be explained by the event that lowered δ18</sup>O values of the source being older than the dykes. We suggest that the QP dykes were fed by magma produced by partial melting of gneiss, which had been variably altered at high temperature by 18</sup>O-depleted meteoric water during global glaciation at ~?550 Ma. The early melts had variable δ18</sup>O value but as melt pockets interconnected during melting, the δ18</sup>O values approached that of average gneiss. Variable quartz phenocryst δ18</sup>O values in the same dyke can be explained by vertical emplacement, at variable rates of ascent along the dyke. The lateral variation in quartz, and hence magma δ18</sup>O value at a particular point along a single dyke would depend on the rate of ascent of magma at that point along the dyke, and the ‘age’ of the particular magma batch.  相似文献   
14.
Quenched juvenile mafic inclusions (enclaves) are an occasional but informative component in the deposits of large felsic eruptions. Typically, the groundmasses of these inclusions rapidly crystallize as the mafic magma is chilled against a more voluminous, cooler felsic host, providing a physical and chemical record of the nature and timing of mafic–felsic interactions. We examine mafic inclusions of two compositional lineages (tholeiitic and calc-alkaline) from deposits of the 25.4 ka Oruanui eruption (Taupo, New Zealand). 2-D quantitative textural data from analysis of back-scattered electron images reveal a marked diversity in the groundmass textures of the inclusions, including median crystal sizes (amphibole: 14–45 µm; plagioclase: 21–75 µm) and aspect ratios (amphibole: 1.7–4.2; plagioclase: 2.1–4.0), area number densities (amphibole: 122–2660 mm?2</sup>; plagioclase: 117–2990 mm?2</sup>), area fractions (?) of minerals (?plag?=?23–45%, ?amph?=?0–28%, ?cpx?=?0–6%, ?oxides?=?0.6–5.5%), and the relative abundance of plagioclase and amphibole (?plag/?amph?=?1.0–4.6). Textural parameters vary more significantly within, rather than between, the two compositional lineages, and in some cases show marked variations across individual clasts, implying that each inclusion’s cooling history, rather than bulk composition, was the dominant control on textural development. Groundmass mineral compositions are also diverse both within and between inclusions (e.g. plagioclase from An34–92, with typical intra-clast variability of ~?20 mol%), and do not correlate with bulk chemistry. Diverse groundmass textures and mineral and glass chemistries are inferred to reflect complex interplay of a range of factors including the degree and rate of undercooling, bulk composition, water content and, possibly, intensive variables. Our data are inconsistent with breakup of a crystallizing ponded mafic layer at the base of the Oruanui melt-dominant body, instead implying that each inclusion partially crystallized as a discrete body with a unique cooling history. Extensive ingestion of mush-derived macro-crystals suggests that mechanical breakup of mafic feeder dikes occurred within a transition zone between the mush and melt-dominant magma body. In this zone, the mush lacked yield strength, as has been inferred from field studies of narrow (meters to few tens of meters) mush-melt transition zones preserved in composite intrusions. Evidence for plastic deformation of inclusions during eruption and the abundance of fresh residual glass in inclusions from all eruptive phases suggest that the inclusions formed syn-eruptively, and must have been formed recurrently at multiple stages throughout the eruption.  相似文献   
15.
16.
Multiphase solid inclusions in minerals formed at ultra-high-pressure (UHP) provide evidence for the presence of fluids during deep subduction. This study focuses on barian mica, which is a common phase in multiphase solid inclusions enclosed in garnet from mantle-derived UHP garnet peridotites in the Saxothuringian basement of the northern Bohemian Massif. The documented compositional variability and substitution trends provide constraints on crystallization medium of the barian mica and allow making inferences on its source. Barian mica in the multiphase solid inclusions belongs to trioctahedral micas and represents a solid solution of phlogopite KMg3(Si3Al)O10(OH)2, kinoshitalite BaMg3(Al2Si2)O10(OH)2 and ferrokinoshitalite BaFe3(Al2Si2)O10(OH)2. In addition to Ba (0.24–0.67 apfu), mica is significantly enriched in Mg (XMg ~ 0.85 to 0.95), Cr (0.03–0.43 apfu) and Cl (0.04–0.34 apfu). The substitution vector involving Ba in the I-site which describes the observed chemical variability can be expressed as BaFeIV</sup>AlClK?1Mg?1Si?1(OH)?1. A minor amount of Cr and VI</sup>Al enters octahedral sites following a substitution vector VI</sup>(Cr,Al)2VI</sup>(Mg,Fe)?3 towards chromphyllite and muscovite. As demonstrated by variable Ba and Cl contents positively correlating with Fe, barian mica composition is partly controlled by its crystal structure. Textural evidence shows that barian mica, together with other minerals in multiphase solid inclusions, crystallized from fluids trapped during garnet growth. The unusual chemical composition of mica reflects the mixing of two distinct sources: (1) an internal source, i.e. the host peridotite and its garnet, providing Mg, Fe, Al, Cr, and (2) an external source, represented by crustal-derived subduction-zone fluids supplying Ba, K and Cl. At UHP–UHT conditions recorded by the associated diamond-bearing metasediments (c. 1100 °C and 4.5 GPa) located above the second critical point in the pelitic system, the produced subduction-zone fluids transporting the elements into the overlying mantle wedge had a solute-rich composition with properties of a hydrous melt. The occurrence of barian mica with a specific chemistry in barium-poor mantle rocks demonstrates the importance of its thorough chemical characterization.  相似文献   
17.
We studied olivines from the Devonian pre-trap (the Ilbokich occurrence) and the Triassic post-trap (the Chadobets occurrence) carbonate-rich ultramafic lamprophyres (UMLs) in the southwestern portion of the Siberian craton. On the basis of detailed investigations of major, minor, and trace-element distributions, we have reconstructed the main processes that control the origins of these olivines. These include fractional crystallisation from melt, assimilation, and fractional crystallisation processes with orthopyroxene assimilation, melt-reaction diffusive re-equilibration, alkali enrichment, and CO2 degassing of the melt. Furthermore, we inferred the composition of the sources of the primary UML melt and their possible correlations with proto-kimberlitic melts, as well as the influence of the Triassic Siberian plume on the composition of the lithospheric mantle. The main differences between olivines from the Ilbokich and the Chadobets aillikites were that the olivines from the former had more magnesium-rich cores (Mg# = 89.2?±?0.2), had Mg- and Cr-rich transition zones (Mg# = 89.7?±?0.2 and 300–500 ppm Cr), had lower Ni (up to 3100 ppm) and Li (1.4–1.5 ppm), and had higher B (0.8–2.6 ppm) contents, all at higher Fo values (90–86), relative to the olivines from the latter (Mg# = 88–75; 200–300 ppm Cr; up to 3400 ppm Ni; 1.4–2.4 ppm Li; 0.4–2.2 ppm B). The Siberian aillikite sources contained a significant amount of metasomatic material. Phlogopite-rich MARID-type veins provided the likely metasomatic component in the pre-trap Devonian Ilbokich aillikite source, whereas the Triassic Chadobets aillikitic post-trap melts were derived from a source with a significant carbonate component. A comparison of UML olivines with olivines from the pre-trap and post-trap Siberian kimberlites shows a striking similarity. This suggests that the carbonate component in the aillikitic source could have been produced by evolved kimberlite melts. The differences in the lithospheric metasomatic component that contributed to pre-trap and post-trap aillikitic melts can be interpreted as reflections of the thermal impact of the Siberian Traps, which reduced phlogopite-bearing metasomes within the southwestern Siberian sub-continental lithospheric mantle.  相似文献   
18.
Homogeneous single crystals of synthetic monticellite with the composition \({\text{Ca}}_{0.88}{\text{Mg}}_{1.12}{\text{SiO}}_4\) (Mtc I) were annealed in a piston-cylinder apparatus at temperatures between 1000 and \(1200\,^{\circ }\hbox {C}\), pressures of 1.0–1.4 GPa, for run durations from 10 min to 24 h and applying bulk water contents ranging from 0.0 to 0.5 wt% of the total charge. At these conditions, Mtc I breaks down to a fine-grained, symplectic intergrowth. Thereby, two types of symplectites are produced: a first symplectite type (Sy I) is represented by an aggregate of rod-shaped forsterite immersed in a matrix of monticellite with end-member composition (Mtc II), and a second symplectite type (Sy II) takes the form of a lamellar merwinite–forsterite intergrowth. Both symplectites may form simultaneously, where the formation of Sy I is favoured by the presence of water. Sy I is metastable with respect to Sy II and is successively replaced by the latter. For both symplectite types, the characteristic spacing of the symplectite phases is independent of run duration and is only weeakly influenced by the water content, but it is strongly temperature dependent. It varies from about 400 nm at \(1000\,^{\circ }\hbox {C}\) to 1200 nm at \(1100\,^{\circ }\hbox {C}\) in Sy I, and from 300 nm at \(1000\,^{\circ }\hbox {C}\) to 700 nm at \(1200\,^{\circ }\hbox {C}\) in Sy II. A thermodynamic analysis reveals that the temperature dependence of the characteristic spacing of the symplectite phases is due to a relatively high activation energy for chemical segregation by diffusion within the reaction front as compared to the activation energy for interface reactions at the reaction front. The temperature dependence of the characteristic lamellar spacing and the temperature-time dependence of overall reaction progress have potential for applications in geo-thermometry and geo-speedometry.  相似文献   
19.
Extrusive and intrusive igneous rocks represent different parts of a magmatic system and ultimately provide complementary information about the processes operating beneath volcanoes. To shed light on such processes, we have examined and quantified the textures and mineral compositions of plutonic and cumulate xenoliths and lavas from Bequia, Lesser Antilles arc. Both suites contain assemblages of iddingsitized olivine, plagioclase, clinopyroxene and spinel with rare orthopyroxene and ilmenite. Mineral zoning is widespread, but more protracted in lavas than xenoliths. Plagioclase cores and olivine have high anorthite (An?≤?98) and low forsterite (Fo?≤?84) compositions respectively, implying crystallisation from a hydrous mafic melt that was already fractionated. Xenolith textures range from adcumulate to orthocumulate with variable mineral crystallisation sequences. Textural criteria are used to organize the xenoliths into six groups. Amphibole, notably absent from lavas, is a common feature of xenoliths, together with minor biotite and apatite. Bulk compositions of xenoliths deviate from the liquid line of descent of lavas supporting a cumulate origin with varying degrees of reactive infiltration by evolved hydrous melts, preserved as melt inclusions in xenolith crystals. Volatile saturation pressures in melt inclusions indicate cumulate crystallization over a 162–571 MPa pressure range under conditions of high dissolved water contents (up to 7.8 wt% H2O), consistent with a variety of other thermobarometric estimates. Phase assemblages of xenoliths are consistent with published experimental data on volatile-saturated low-magnesium and high-alumina basalts and basaltic andesite from the Lesser Antilles at pressures of 200–1000 MPa, temperatures of 950–1050 °C and dissolved H2O contents of 4–7 wt%. Once extracted from mid-crustal mushes, residual melts ascend to higher levels and undergo H2O-saturated crystallization in shallow, pre-eruptive reservoirs to form phenocrysts and glomerocrysts. The absence of amphibole from lavas reflects instability at low pressures, whereas its abundance in xenoliths testifies to its importance in mid-crustal differentiation processes. A complex, vertically extensive (6 to at least 21 km depth) magmatic system is inferred beneath Bequia. Xenoliths represent fragments of the mush incorporated into ascending magmas. The widespread occurrence of evolved melts in the mush, but the absence of erupted evolved magmas, in contrast to islands in the northern Lesser Antilles, may reflect the relative immaturity of the Bequia magmatic system.  相似文献   
20.
A new phase equilibria geobarometer determines magmatic storage and crystallization conditions, including pressure, temperature, oxygen fugacity (\({f_{{{\text{o}}_2}}}\)), and the presence of a fluid phase for glass-bearing rocks containing the assemblage plagioclase?+?pyroxene(s). This newly developed geobarometer can better constrain crystallization conditions of shallow (<?500 MPa; <~?20 km), glass-bearing andesites to dacites. The geobarometer utilizes rhyolite-MELTS to determine crystallization conditions in natural pumice and scoria samples. The validity of the geobarometer is tested by comparing it to results from experiments. Uncertainties are assessed using Monte Carlo simulations. We apply the geobarometer to the plag?+?opx?+?cpx-bearing system of Mt. Ruapehu, in the southern Taupo Volcanic Zone, New Zealand. The samples from Mt. Ruapehu are tested from ~?5 to ~?400 MPa and from super-liquidus to 90% crystalline (~ 1200 to ~ 700 °C). Mt. Ruapehu serves as a methodological testing ground for the geobarometer, and results from our geobarometer agree with recent Mt. Ruapehu studies. Results show a distribution of crystallization pressures ranging from 50 to 150 MPa (~?2.0 to 5.9 km) for different eruptions, with modes of 110 MPa (~ 4.3 km) and 130 MPa (~ 5.1 km). These are consistent with field interpretations of different eruptive styles based on juvenile clast textures and previous knowledge of the magma plumbing system. Mt. Ruapehu magmas are fluid saturated, with \({f_{{{\text{o}}_2}}}\) of ΔQFM ~ + 1 (NNO).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号