首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   58篇
  国内免费   362篇
测绘学   1篇
大气科学   124篇
地球物理   119篇
地质学   223篇
海洋学   117篇
天文学   63篇
综合类   38篇
自然地理   80篇
  2024年   15篇
  2023年   83篇
  2022年   29篇
  2021年   43篇
  2020年   18篇
  2019年   21篇
  2018年   19篇
  2017年   16篇
  2016年   9篇
  2015年   34篇
  2014年   67篇
  2013年   37篇
  2012年   15篇
  2011年   25篇
  2010年   14篇
  2009年   13篇
  2008年   18篇
  2007年   22篇
  2006年   19篇
  2005年   19篇
  2004年   13篇
  2003年   20篇
  2002年   15篇
  2001年   18篇
  2000年   21篇
  1999年   14篇
  1998年   17篇
  1997年   15篇
  1996年   17篇
  1995年   12篇
  1994年   13篇
  1993年   13篇
  1992年   5篇
  1991年   7篇
  1990年   8篇
  1989年   9篇
  1988年   6篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有765条查询结果,搜索用时 312 毫秒
71.
A 3-D chemical transport model (OSLO CTM2) is used to investigate the impact of the increase of NOx emission over China. The model is capable to reproduce basically the seasonal variation of surface NOx and ozone over eastern China. NOx emission data and observations reveal that NOx over eastern China increases quite quickly with the economic development of China. Model results indicate that NOx concentration over eastern China increasingly rises with the increase of NOx emission over China, and accelerates to increase in winter. When the NOx emission increases from 1995 to its double, the ratio of NO2/NOx abruptly drops in winter over northern China. Ozone at the surface decreases in winter with the continual enhancement of the NOx level over eastern China, but increases over southern China in summertime. It is noticeable that peak ozone over northern China increases in summer although mean ozone changes little. In summer, ozone increases in the free troposphere dominantly below 500 hPa.Moreover, the increases of total ozone over eastern China are proportional to the increases of NOx emission.In a word, the model results suggest that the relationship between NOx and ozone at the surface would change with NOx increase.  相似文献   
72.
Liu M  Hou LJ  Xu SY  Ou DN  Yang Y  Yu J  Wang Q 《Marine pollution bulletin》2006,52(12):1625-1633
The natural isotopic compositions and C/N elemental ratios of sedimentary organic matter were determined in the intertidal flat of the Yangtze Estuary. The results showed that the ratios of carbon and nitrogen stable isotopes were respectively −29.8‰ to − 26.0‰ and 1.6‰–5.5‰ in the flood season (July), while they were −27.3‰ to − 25.6‰ and 1.7‰–7.8‰ in the dry season (February), respectively. The δ13C signatures were remarkably higher in July than in February, and gradually increased from the freshwater areas to the brackish areas. In contrast, there were relatively complex seasonal and spatial changes in stable nitrogen isotopes. It was also reflected that δ15N and C/N compositions had been obviously modified by organic matter diagenesis and biological processing, and could not be used to trace the sources of organic matter at the study area. In addition, it was considered that the mixing inputs of terrigenous and marine materials generally dominated sedimentary organic matter in the intertidal flat. The contribution of terrigenous inputs to sedimentary organic matter was roughly estimated according to the mixing balance model of stable carbon isotopes.  相似文献   
73.
The systematic discrepancies in both tsunami arrival time and leading negative phase (LNP) were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel, Chile by examining the wave characteristics from the tsunami records at 21 Deep-ocean Assessment and Reporting of Tsunami (DART) sites and 29 coastal tide gauge stations. The results revealed systematic travel time delay of as much as 22 min (approximately 1.7% of the total travel time) relative to the simulated long waves from the 2015 Chilean tsunami. The delay discrepancy was found to increase with travel time. It was difficult to identify the LNP from the near-shore observation system due to the strong background noise, but the initial negative phase feature became more obvious as the tsunami propagated away from the source area in the deep ocean. We determined that the LNP for the Chilean tsunami had an average duration of 33 min, which was close to the dominant period of the tsunami source. Most of the amplitude ratios to the first elevation phase were approximately 40%, with the largest equivalent to the first positive phase amplitude. We performed numerical analyses by applying the corrected long wave model, which accounted for the effects of seawater density stratification due to compressibility, self-attraction and loading (SAL) of the earth, and wave dispersion compared with observed tsunami waveforms. We attempted to accurately calculate the arrival time and LNP, and to understand how much of a role the physical mechanism played in the discrepancies for the moderate transoceanic tsunami event. The mainly focus of the study is to quantitatively evaluate the contribution of each secondary physical effect to the systematic discrepancies using the corrected shallow water model. Taking all of these effects into consideration, our results demonstrated good agreement between the observed and simulated waveforms. We can conclude that the corrected shallow water model can reduce the tsunami propagation speed and reproduce the LNP, which is observed for tsunamis that have propagated over long distances frequently. The travel time delay between the observed and corrected simulated waveforms is reduced to <8 min and the amplitude discrepancy between them was also markedly diminished. The incorporated effects amounted to approximately 78% of the travel time delay correction, with seawater density stratification, SAL, and Boussinesq dispersion contributing approximately 39%, 21%, and 18%, respectively. The simulated results showed that the elastic loading and Boussinesq dispersion not only affected travel time but also changed the simulated waveforms for this event. In contrast, the seawater stratification only reduced the tsunami speed, whereas the earth's elasticity loading was responsible for LNP due to the depression of the seafloor surrounding additional tsunami loading at far-field stations. This study revealed that the traditional shallow water model has inherent defects in estimating tsunami arrival, and the leading negative phase of a tsunami is a typical recognizable feature of a moderately strong transoceanic tsunami. These results also support previous theory and can help to explain the observed discrepancies.  相似文献   
74.
Risk analysis for clustered check dams due to heavy rainfall   总被引:7,自引:1,他引:6  
Check dams are commonly constructed around the world for alleviating soil erosion and preventing sedimentation of downstream rivers and reservoirs.Check dams are more vulnerable to failure due to their less stringent flood control standards compared to other dams.Determining the critical precipitation that will result in overtopping of a dam is a useful approach to assessing the risk of failure on a probabilistic basis and for providing early warning in case of an emergency.However,many check dams are built in groups,spreading in several tributaries in cascade forms,comprising a complex network.Determining the critical precipitation for dam overtopping requires a knowledge of its upstream dams on whether they survived or were overtopped during the same storm,while these upstream dams in turn need the information for their upstream dams.The current paper presents an approach of decomposing the dam cluster into(1)the heading dam,(2)border dams,and(3)intermediate dams.The algorithm begins with the border dams that have no upstream dams and proceeds with upgraded maps without the previous border dams until all the dams have been checked.It is believed that this approach is applicable for small-scale check dam systems where the time lag of flood routing can be neglected.As a pilot study,the current paper presents the analytical results for the Wangmaogou Check Dam System that has 22 dams connected in series and parallel.The algorithm clearly identified 7 surviving dams,with the remaining ones being overtopped for a storm of 179.6 mm in 12 h,which is associated with a return period of one in 200 years.  相似文献   
75.
The Late Triassic igneous rocks in the Yidun terrane can provide vital insights into the evolution of Plaeo-Tethys in western China. We present new zircon U-Pb, whole-rock geochemistry, and Sr-Nd-Pb-Hf isotopic data for the Litang biotite monzogranites, Yidun terrane. The biotite monzogranites have a zircon U-Pb age of 206.1±1.0 Ma(MSWD=1.9,n=30), which indicates Late Triassic magmatism. The biotite monzogranites display I-type affinity, high Na_2O(3.38-3.60 wt%) contente,medii SiO_2(67.12-69.13 wt%), and low P_2 O_5 contents(0.10~0.12 wt%). They enriched in Rb,and Ba and depleted in Nb and Ta, with negative Eu anomalies(Eu/Eu*=0.74—0.81). They have evolved Sr-Nd-Pb-Hf isotopic composition, i.e.,(~(87) Sr/~(86 )Sr)i=0.714225 to 0.714763, negative ?_(Nd(t)) values of -2.0 to-2.6 with two-stage Nd model ages ranging from 1.01 to 1.05 Ga, negative ?_(Ht)(t)) values o f-3.4 to-4.1 with two-stage Hf model ages of 1.85 to1.88 Ga, suggesting a matured crustal sources. Their low Al_2O_3/TiO_2 ratios and medium Cao/Na_2O ratios, medium Mg~# and SiO_2 contents, low [molar Al_2O_3/(MgO+FeO~T)] values, and high [molar Cao/(MgO+FeO~T)] values indicate that the Litang biotite monzogranite was formed by partial melting of metabasaltic rocks. Based on the previous studies, we propose that the Litang biotite monzogranite derived from the westward subduction and closure of the Ganzi-Litang ocean during the Late Triassic-The mantle wedge-derived mafic melts provided sufficient heat for partial melting of ancient metabasalt protolith within the middle-lower crust.  相似文献   
76.
77.
Kerogen plays an important role in shale gas adsorption, desorption and diffusion. Therefore, it is necessary to characterize the molecular structure of kerogen. In this study, four kerogen samples were isolated from the organic-rich shale of the Longmaxi Formation. Raman spectroscopy was used to determine the maturity of these kerogen samples. High-resolution transmission electron microscopy (HRTEM), 13C nuclear magnetic resonance (13C NMR) , X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were conducted to characterize the molecular structure of the shale samples. The results demonstrate that VReqv of these kerogen samples vary from 2.3% to 2.8%, suggesting that all the kerogen samples are in the dry gas window. The macromolecular carbon skeleton of the Longmaxi Formation kerogen is mainly aromatic (fa’=0.56). In addition, the aromatic structural units are mainly composed of naphthalene (23%), anthracene (23%) and phenanthrene (29%). However, the aliphatic structure of the kerogen macromolecules is relatively low (fal*+falH=0.08), which is presumed to be distributed in the form of methyl and short aliphatic chains at the edge of the aromatic units. The oxygen-containing functional groups in the macromolecules are mainly present in the form of carbonyl groups (fac=0.23) and hydroxyl groups or ether groups (falO=0.13). The crystallite structural parameters of kerogen, including the stacking height (Lc=22.84 ?), average lateral size (La=29.29 ?) and interlayer spacing (d002=3.43 ?), are close to the aromatic structural parameters of anthracite or overmature kerogen. High-resolution transmission electron microscopy reveals that the aromatic structure is well oriented, and more than 65% of the diffractive aromatic layers are concentrated in the main direction. Due to the continuous deep burial, the longer aliphatic chains and oxygen-containing functional groups in the kerogen are substantially depleted. However, the ductility and stacking degree of the aromatic structure increases during thermal evolution. This study provides quantitative information on the molecular structure of kerogen samples based on multiple research methods, which may contribute to an improved understanding of the organic pores in black shale.  相似文献   
78.
79.
Air quality was improved considerably and the so-called "Lanzhou Blue" appeared frequently in Lanzhou due to implementation of some strict emission-control measures in recent years. To better understand whether the concentration of each air pollutant had decreased significantly and then give some suggestions as to urban air-quality improvement in the near future, the variations of the Air Quality Index (AQI) and six criterion air pollutants (PM2.5, PM10, CO, SO2, NO2, and O3) at five state-controlled monitoring sites of Lanzhou were studied from 2013 to 2016. The AQI, PM2.5, PM10, and SO2 gradually decreased from 2013 to 2016, while CO and NO2 concentrations had slightly increasing trends, especially in urban areas, due to the large number of motor vehicles, which had an annual growth rate of 30.87%. The variations of the air pollutants in the no-domestic-heating season were more significant than those in the domestic-heating season. The increase of ozone concentration for the domestic-heating season at a background station was the most significant among the five monitoring sites. The vehicle-exhaust and ozone pollution was increasingly severe with the rapid increase in the number of motor vehicles. The particulate-matter pollution became slight in the formerly highly polluted Lanzhou City. Some synergetic measures in urban and rural areas of Lanzhou should be taken by the local government in the near future to control fine particulate-matter (PM2.5) and ozone pollution.  相似文献   
80.
Evapotranspiration (ET) within an ecosystem is crucial for the water-limited environment that currently lacks adequate quantification in the arid region of Northwest China, mainly covered by phreatophytes, such as the Populus euphratica Oliv. tree and the Tamarix ramosissima Ledeb. shrub species. Accordingly, ET was measured for an entire year using eddy covariance (EC) in P. euphratica stands in the lower Heihe River Basin, Northwest China. During the growing season, the total ET was 850 mm, with a mean of 4.0 mm/d, which is obviously more than that observed at tree-level and standlevel scales, which was likely due to the different level of soil evaporation induced by irrigation via water conveyance. Factors associated with ET fall into either environmental or plant eco-physiological categories. Environmental factors account for at least 79% variation of ET, and the linear relationship between ET and the groundwater table (GWT) revealed the potential water use of P. euphratica forests under the non-water stress condition with the GWT less than 3 m deep. Plant eco-physiological parameters, specifically the leaf area index (LAI), have direct impact on the seasonal pattern of ET, which provides a valuable reference to the wide-area estimates of ET for riparian forests by using LAI. In conclusion, P.euphratica forests have high water use after water conveyance, which may be the result of long-term adapting to local climates and limited water availability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号