首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25163篇
  免费   11篇
  国内免费   75篇
测绘学   724篇
大气科学   1780篇
地球物理   3973篇
地质学   12377篇
海洋学   1594篇
天文学   3965篇
综合类   156篇
自然地理   680篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   3339篇
  2017年   3141篇
  2016年   1767篇
  2015年   132篇
  2014年   36篇
  2013年   9篇
  2012年   1208篇
  2011年   2969篇
  2010年   2798篇
  2009年   2845篇
  2008年   2198篇
  2007年   2934篇
  2006年   51篇
  2005年   524篇
  2004年   403篇
  2003年   495篇
  2002年   281篇
  2001年   33篇
  2000年   39篇
  1999年   1篇
  1981年   14篇
  1980年   21篇
  1976年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Soil contamination with cadmium has become major concern all over the world because of its adverse impacts on ecosystem health and agricultural land. Soil amendment with biochar may have varied effects on physical and chemical properties of soil. The objective of the study was to explore the impact of sugarcane filter-cake biochar on physiological performance and growth of lettuce in an aged soil. Four different doses (0, 1.5%, 3%, and 5%) of biochar were used in the soil and conditioned for 1 month. After this, lettuce seedlings were grown in the soil. The results showed that the biochar treatment improved the fresh and dry biomass of leaves and roots as well as plant height while diminished the bioavailability of cadmium from the soil. As compared to control, biochar significantly enhanced the chlorophyll content in lettuce leaves. Due to the biochar amendment, the oxidative stress decreased in lettuce shoots over the control. As compared to control, concentration of cadmium in lettuce significantly decreased after the application of biochar. It was concluded that biochar could mitigate the toxicity of cadmium in lettuce by altering the biochemical and physiological processes in cadmium contaminated soil.  相似文献   
982.
Phosphogypsum and cement have been reported to improve the physicochemical properties of clayey soils. The present study aimed to investigate the behavior of various soils with different particle sizes and chemical and mineralogical compositions in the presence of phosphogypsum and cement mixed at various proportions. These hydraulic binders were assayed on three different soil samples, and their effects were examined using a battery of standardized tests, including the Atterberg limit, uniaxial compressive strength, Californian Bearing Rate (CBR) test, thermogravimetric analysis (TGA), microstructure observation (SEM), and X-ray diffraction tests. The results revealed a significant effect associated with the variation of phosphogypsum content in the soils. Keeping the cement content constant in the mixture, the continuous addition of phosphogypsum was noted to allow shifting the domain of plasticity to the highest water contents, which reduces the sensitivity of the soil to water and to increase the strength of soil. An increase of CBR index with the addition of phosphogypsum and cement is obtained. This treatment could have positively influenced the optimum moisture content and the maximal dry density. The mixture of soil-phosphogypsum and cement could give new forms such as ettringite and hydrate indicators of the improvement of the mechanical properties of the soil. This improvement varies from one soil to another, depending on its granularity and its mineralogy. The mineralogical composition of the soil, particularly kaolinite, amount, and size grading, have direct effects on the physical and mechanical properties of the soils under investigation.  相似文献   
983.
Two cores of sediments, named NR and EB, were collected in the Simbock Lake (Mefou watershed, Yaoundé) to assess their provenance and the degree of heavy metal pollution based on mineralogical and geochemical data. The sediments are sandy, sand-clayey to clayey, and yellowish brown to greenish brown, and with high amounts of organic matter (average value of TOC is 1.95%). The sediments are mainly composed of quartz, kaolinite, accessory goethite, smectite, rutile, feldspars, illite, gibbsite, and interstratified illite-vermiculite. Fourier transform infrared (FT-IR) spectroscopy shows that kaolinite is less crystallized in the NR core than in the EB core. The Index of Compositional Variability (ICV), Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA), and the Rb/Sr and K2O/Rb ratios indicate a high weathering intensity in the source area. These sediments have low contents in Al2O3, Fe2O3, Na2O, K2O, MgO, and CaO as well as high values in SiO2, P2O5, TiO2, and MnO relative to the upper continental crust. The concentrations of Cr, V, Ba, and Zr are higher in the NR core than those in EB. The total rare earth element (REE) content varies between 78 and 405 ppm. The light REE are abundant (LREE/HREE ~?18–59; avg.?=?25.61). The chondrite-normalized REE patterns exhibit (i) negative Eu anomaly (Eu/Eu* ~?0.38–0.62; avg.?=?0.5), (ii) slight positive Ce anomaly (Ce/Ce* ~?1.11–1.34; avg.?=?1.11), and (iii) high REE fractionation ((La/Yb)N ~?12.3–51.75; avg.?=?25.61). The enrichment factor (EF) shows that the Mefou watershed through the Simbock Lake sediments is slightly polluted by the agricultural and urban activities.  相似文献   
984.
The Iran’s mineral sector, as a major supplier of mineral industries, plays a central role on Iran economy. Promoting the productivity in this area leads to the enhancement of the business environment. Also, it can influence the production chain and minerals value added. In this study, a comprehensive study was conducted on the major barriers/drivers factors affecting the efficiency in the mining sector. Furthermore, 16 key factors were identified using the expert views. These parameters are divided into four main categories: strengths, weaknesses, opportunities, and threats. In addition, a hierarchy model was designed in which the mentioned four efficient strategic parameters were implemented and the SWOT analysis was applied, as well as the nine macro strategies were determined. In order to prioritize these strategies, multiple steps were carried out. First, the subfactors were weighted by implementing the fuzzy multi attribute decision-making technique by combining the experts’ views and triangular fuzzy numbers. Subsequently, the strategies were prioritized by employing the group Fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model. The sensitive analysis of the results presents some minor changes in score of the alternatives, but no alteration was affected in the prioritized strategies. The results revealed the importance of resource allocation strategies related to the existing investments as well as supporting and facilitating the new technology in the mining sector.  相似文献   
985.
The Azraq basin (the Badia region in NE-Jordan) is rich in its industrial rocks and minerals. Most of the commodities are concentrated in one area, which is the Azraq depression (El-Qa’). The climatic changes (wet and dry) of Azraq closed lake contributed in the formation of industrial rocks and minerals in the El-Qa’. Basalt, pyroclastics, zeolites, diatomaceous earth, bentonite, palgorskite, porcelanite, saline brines, chalk, limestone, and gypsum are the potential industrial commodities. The basaltic rocks are of high alkalis content and good homogeneity and are of good potential use in constructions and cast basalt. The scoriaceous pyroclastic material proved to be of excellent properties for use as lightweight aggregates, cultivation purposes, and for the production of pozzolanic cement. Smectite-rich beds (bentonite) from Ein El Badia could be used as binder, absorbent, and additives for feeding farm animals. Palygorskite is potential for use in drilling mud, paint, pharmaceuticals, and as a filtering medium. The diatomaceous earth deposits are Moler type and could be used as filter aid and absorbent. Zeolites are efficient for agricultural purposes, animal waste, and wastewater treatment plants. Saline brine is exploited in the Azraq mudflat area for table salt. Porcelanite could be used as an absorbent of hazardous elements, abrasive, and filler. The softness and high purity of chalk enable its use as filler and in the lime production. The large limestone concretions are of high quality for use as a building stone. Gypsum (gypcrete) could be used after the removal of the undesired chert impurities. The Badia region is a highly potential area for future exploration and mining industry in a manner that achieves the required outcomes and minimizes impacts on ecosystems.  相似文献   
986.
The metalized quartz veins is located 5 km west of the Iraqi-Iran border in the Qandil range. The quartz veins included sulfide and oxide ore minerals which mostly occur in the form of open-space filling texture. The polymetallic mesothermal quartz veins are hosted by marble and phyllite rocks. Within these veins, multiphase, open-space filling and crustiform, bedding to massive textures with pyrite, sphalerite, galena, chalcopyrite,galena, sphalerite, tenorite, azurite, and malachite are observed. Selected samples were analyzed by using ore microscopy and electron probe micro analyzer (EPMA) and scanning electron microscope (SEM). Ore minerals show replacement textures. The paragenesis diagram was made from a careful study of polished sections and three stages have been identified including pre-stage mineralization, mineralization, and post-mineralization stages.Fluid inclusion microthermometric analysis of 15 primary inclusions of quartz veins indicated that ore mineralization at the studied area were formed by a mesothermal, low to medium density, and dilute NaCl-type fluid system. The source of the fluid is mostly metamorphic which became mixed with other fluids later. Hydrothermal fluids of the selected studied area were classified into two groups based on microthermometry study; the first group had a higher homogenization temperature (335.5 to 386.8 °C) than the second group (194.1 to 298.5 °C), with a small difference in salinity between them. Nearly each group has different complexes including chloride and sulfide complexes respectively. The results of stable sulfur isotope of the ore minerals (chalcopyrite and sphalerite) confirmed the sedimentary and/or metamorphic origin of the ore mineralization.  相似文献   
987.
The mineralogy and geochemistry of the Upper Cretaceous Duwi black shales of Nile Valley district, Aswan Governorate, Egypt, have been investigated to identify the source rock characteristics, paleoweathering, and paleoenvironment of the source area. The Duwi Formation consists mainly of phosphorite and black shales and is subdivided into three members. The lower and upper members composed mainly of phosphorite beds intercalated with thin lenses of gray shales, while the middle member is mainly composed of gray shale, cracked, and filled with gypsum. Mineralogically, the Duwi black shales consist mainly of smectite and kaolinite. The non-clay minerals are dominated by quartz, calcite, phosphate, dolomite, feldspar, with little gypsum, anhydrite, iron oxides, and pyrite. Based on the CIA, PIA, and CIW values (average?=?84, 94, 95, respectively), it can be concluded that the litho-components of the studied shales were subjected to intense chemical weathering and reflect warm/humid climatic conditions in the depositional basin. The provenance discrimination diagram indicates that the nature of the source rocks probably was mainly intermediate and mafic igneous sources with subordinate recycled sedimentary rocks (Nubia Formation). Geochemical characteristics indicate that the Duwi black shales in Nile Valley district were deposited under anoxic reducing marine environments.  相似文献   
988.
This study presents both qualitative and quantitative data regarding marine mollusk (gastropods and bivalves) shell bioerosion and encrustation based on death assemblages obtained from a recent supratidal environment in Playa Norte, Veracruz State. The objectives of this study were to assess the nature of bioerosion and encrustation processes and to investigate the role of these taphonomic features contributing to the deterioration of natural shell accumulations within a tropical siliciclastic tidal environment. The assemblage comprises 31 species: 13 gastropods and 18 bivalves. The bioerosion and encrustation degrees were low to moderate for both types. The most abundant traces were predatory gastropod structures (Oichnus paraboloides and O. simplex), whereas sponge borings (Entobia isp.), polychaete dwellings (Caulostrepsis taeniola), and echinoid raspings (Gnatichnus isp.) were less frequent. The encrusting organisms include polychaete serpulids, bryozoans, and rare foraminifers (Homotrema rubrum). Because of the low bioerosion and encrustation degrees occurring in this area, accumulation is expected to predominate over biotic destruction. As deposition conditions (richly fossiliferous carbonate sandstone beds) were similar to those prevailing in the Tuxpan Formation during the Miocene (Langhian), it is suggested that this study provides an equivalent reference to interpret mollusk fossil assemblages located in this site.  相似文献   
989.
In the past few decades, rapid urbanization has occurred in many regions of the Kingdom of Saudi Arabia due to increasing population and urban development. Additionally, the effects of global warming on rainfall characteristics have been observed. This rapid change in urbanization and climate change has cause significant changes in the nature of land surfaces and rainfall patterns, which affect the runoff process and the amount of surface runoff during floods. This study investigated the effect of urbanization and rainfall intensity for Hafr Al-Batin watershed located in Saudi Arabia. For this purpose, a hydrologic model, HEC-HMS, was adopted to simulate the flow of different rainfall intesities and urbanization levels. Simulated results showed that for a 100-year storm, a 24-h duration, and an urbanization level of 80%, the peak flow was 213% higher than the estimated current peak and the runoff volume was 112% higher than the current runoff volume. These results show a strong linear correlation between the level of urbanization and both peak discharge and runoff volume. Furthermore, the results indicate that for short return periods, the peak flow is more sensitive to the level of urbanization compared to long periods.  相似文献   
990.
The three-dimensional high-resolution imaging of rock samples is the basis for pore-scale characterization of reservoirs. Micro X-ray computed tomography (µ-CT) is considered the most direct means of obtaining the three-dimensional inner structure of porous media without deconstruction. The micrometer resolution of µ-CT, however, limits its application in the detection of small structures such as nanochannels, which are critical for fluid transportation. An effective strategy for solving this problem is applying numerical reconstruction methods to improve the resolution of the µ-CT images. In this paper, a convolutional neural network reconstruction method is introduced to reconstruct high-resolution porous structures based on low-resolution µ-CT images and high-resolution scanning electron microscope (SEM) images. The proposed method involves four steps. First, a three-dimensional low-resolution tomographic image of a rock sample is obtained by µ-CT scanning. Next, one or more sections in the rock sample are selected for scanning by SEM to obtain high-resolution two-dimensional images. The high-resolution segmented SEM images and their corresponding low-resolution µ-CT slices are then applied to train a convolutional neural network (CNN) model. Finally, the trained CNN model is used to reconstruct the entire low-resolution three-dimensional µ-CT image. Because the SEM images are segmented and have a higher resolution than the µ-CT image, this algorithm integrates the super-resolution and segmentation processes. The input data are low-resolution µ-CT images, and the output data are high-resolution segmented porous structures. The experimental results show that the proposed method can achieve state-of-the-art performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号