首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   7篇
  国内免费   4篇
测绘学   4篇
大气科学   28篇
地球物理   58篇
地质学   57篇
海洋学   17篇
天文学   12篇
综合类   1篇
自然地理   14篇
  2022年   1篇
  2021年   4篇
  2020年   7篇
  2019年   5篇
  2018年   4篇
  2017年   9篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   6篇
  2011年   10篇
  2010年   13篇
  2009年   12篇
  2008年   8篇
  2007年   5篇
  2006年   7篇
  2005年   12篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   5篇
  2000年   1篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1973年   1篇
  1947年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
21.
Stratified cultural remains from the Early Roman/Nabataean to Byzantine periods in the coastal zone of Aqaba, Jordan, and analyses of thirteen sediment cores provide evidence for changes in the depositional environment during the Holocene. The overall trend in subsurface sediments is a basal marine transgressive layer overlain by a regressional sequence of embayment lagoonal sediments identified from microfossil analyses, and backshore pond, alluvium, and eolian deposits until the 1st century B.C., when mudbrick structures appear. Based on two radiocarbon dates, a brackish water coastal embayment formed prior to ca. 5900–5700 B.C. and was subsequently filled by siltation. Local tectonic subsidence along faults of the Dead Sea transform may have helped form the lagoon. Freshwater Candona sp. ostracods found in sand layers in the lagoon facies show signs of having been transported and redeposited. These data indicate that lakes or marshes were likely located inland of the study area. Supporting faunal and floral evidence for wetter climatic conditions, wetland habitats, and extensive water diversion and agricultural terraces has been excavated at late Chalcolithic (4000–3500 B.C.) sites in the Aqaba region (Khalil & Schmidt, 2009 ). By the 8th century B.C., the depositional environment along the coastal plain of Aqaba was dominated by distal alluvial fan and eolian sedimentation and the shoreline had prograded about 400m seaward. The migration of human settlements since the 8th century B.C. from the center of the valley toward the southeast may be driven by the changing course of Wadi Yutim and conditions along the coastal plain. © 2010 Wiley Periodicals, Inc.  相似文献   
22.
This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone damages under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 478 estimates of the temperature-damage relationship from nineteen studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5 °C increase in global surface air temperature would cause hurricane damages to increase by 63 %. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are +28 % and +23 %, respectively. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.  相似文献   
23.
Most research on future climate change discusses mitigation and impacts/adaptation separately. However, mitigation will have implications for impacts and adaptation. Similarly, impacts and adaptation will affect mitigation. This paper begins to explore these two veins of research simultaneously using an integrated assessment model. We begin by discussing the types of interactions one might expect by impact sector. Then, we develop a numerical experiment in the agriculture sector to illustrate the importance of considering mitigation, impacts, and adaptation at the same time. In our experiment, we find that climate change can reduce crop yields, resulting in an expansion of cropland to feed a growing population and a reduction in bioenergy production. These two effects, in combination, result in an increase in the cost of mitigation.  相似文献   
24.
Here we simulate dryland agriculture in the United States in order to assess potential future agricultural production under a set of general circulation model (GCM)-based climate change scenarios. The total national production of three major grain crops—corn, soybeans, and winter wheat—and two forage crops—alfalfa and clover hay—is calculated for the actual present day core production area (CPA) of each of these crops. In general, higher global mean temperature (GMT) reduces production and higher atmospheric carbon dioxide concentration ([CO2]) increases production. Depending on the climatic change scenarios employed overall national production of the crops studied changes by up to plus or minus 25% from present-day levels. Impacts are more significant regionally, with crop production varying by greater than ±50% from baseline levels. Analysis of currently possible production areas (CPPAs) for each crop indicates that the regions most likely to be affected by climate change are those on the margins of the areas in which they are currently grown. Crop yield variability was found to be primarily influenced by local weather and geographic features rather than by large-scale changes in climate patterns and atmospheric composition. Future US agronomic potential will be significantly affected by the changes in climate projected here. The nature of the crop response will depend primarily on to what extent precipitation patterns change and also on the degree of warming experienced.  相似文献   
25.
Since 1999, Ohio EPA hydrogeologists have used two analytic element models (AEMs), the proprietary software GFLOW and U.S. EPA's WhAEM, to delineate protection areas for 535 public water systems. Both models now use the GFLOW2001 solution engine, integrate well with Geographic Information System (GIS) technology, have a user-friendly graphical interface, are capable of simulating a variety of complex hydrogeologic settings, and do not rely upon a model grid. These features simplify the modeling process and enable AEMs to bridge the gap between existing simplistic delineation methods and more complex numerical models. Ohio EPA hydrogeologists demonstrated that WhAEM2000 and GFLOW2000 were capable of producing capture zones similar to more widely accepted models by applying the AEMs to eight sites that had been previously delineated using other methods. After the Ohio EPA delineated protection areas using AEMs, more simplistic delineation methods used by other states (volumetric equation and arbitrary fixed radii) were applied to the same water systems to compare the differences between various methods. GIS software and two-tailed paired t-tests were used to quantify the differences in protection areas and analyze the data. The results of this analysis demonstrate that AEMs typically produce significantly different protection areas than the most simplistic delineation methods, in terms of total area and shape. If the volumetric equation had been used instead of AEMs, Ohio would not have protected 265 km2 of critical upgradient area and would have overprotected 269 km2 of primarily downgradient land. Since an increasing number of land-use restrictions are being tied to drinking water protection areas, this analysis has broad policy implications.  相似文献   
26.
In this paper, we propose a scenario framework that could provide a scenario “thread” through the different climate research communities (climate change – vulnerability, impact, and adaptation - and mitigation) in order to support assessment of mitigation and adaptation strategies and climate impacts. The scenario framework is organized around a matrix with two main axes: radiative forcing levels and socio-economic conditions. The radiative forcing levels (and the associated climate signal) are described by the new Representative Concentration Pathways. The second axis, socio-economic developments comprises elements that affect the capacity for mitigation and adaptation, as well as the exposure to climate impacts. The proposed scenarios derived from this framework are limited in number, allow for comparison across various mitigation and adaptation levels, address a range of vulnerability characteristics, provide information across climate forcing and vulnerability states and span a full century time scale. Assessments based on the proposed scenario framework would strengthen cooperation between integrated-assessment modelers, climate modelers and vulnerability, impact and adaptation researchers, and most importantly, facilitate the development of more consistent and comparable research within and across these research communities.  相似文献   
27.
Coupling of the Community Land Model (CLM3) to the ICTP Regional Climate Model (RegCM3) substantially improves the simulation of mean climate over West Africa relative to an older version of RegCM3 coupled to the Biosphere Atmosphere Transfer Scheme (BATS). Two 10-year simulations (1992–2001) show that the seasonal timing and magnitude of mean monsoon precipitation more closely match observations when the new land surface scheme is implemented. Specifically, RegCM3–CLM3 improves the timing of the monsoon advance and retreat across the Guinean Coast, and reduces a positive precipitation bias in the Sahel and Northern Africa. As a result, simulated temperatures are higher, thereby reducing the negative temperature bias found in the Guinean Coast and Sahel in RegCM3–BATS. In the RegCM3–BATS simulation, warmer temperatures in northern latitudes and wetter soils near the coast create excessively strong temperature and moist static energy gradients, which shifts the African Easterly Jet further north than observed. In the RegCM3–CLM3 simulation, the migration and position of the African Easterly Jet more closely match reanalysis winds. This improvement is triggered by drier soil conditions in the RegCM3–CLM3 simulation and an increase in evapotranspiration per unit precipitation. These results indicate that atmosphere–land surface coupling has the ability to impact regional-scale circulation and precipitation in regions exhibiting strong hydroclimatic gradients.  相似文献   
28.
We present a new method to detect and quantify mass segregation in star clusters. It compares the minimum spanning tree (MST) of massive stars with that of random stars. If mass segregation is present, the MST length of the most massive stars will be shorter than that of random stars. This difference can be quantified (with an associated significance) to measure the degree of mass segregation. We test the method on simulated clusters in both 2D and 3D and show that the method works as expected.
We apply the method to the Orion Nebula Cluster (ONC) and show that the method is able to detect the mass segregation in the Trapezium with a 'mass segregation ratio (MSR)'  ΛMSR= 8.0 ± 3.5  (where  ΛMSR= 1  is no mass segregation) down to  16 M  , and also that the ONC is mass segregated at a lower level  (∼2.0 ± 0.5)  down to  5 M  . Below  5 M  we find no evidence for any further mass segregation in the ONC.  相似文献   
29.
Reconstruction of prehistoric tropical cyclone (TC) activity often relies on the identification of distinctive overwash deposits (tempestites) in coastal lagoon sediments. Similar sediment deposits, however, can result from high-energy events other than TCs. In this study we assessed the utility of using the geochemistry of ostracod valves, specifically their stable oxygen isotope composition (δ18O), as a potential validation variable that could reduce the chances of misidentifying an overwash deposit as having been generated by a TC, when in fact it formed from another high-energy depositional process (type 1 error). We applied this technique to a sediment core recovered from Laguna Alejandro, Dominican Republic, which had already been analyzed for other sedimentary TC proxies. Negative δ18O anomalies identified in the ostracod valve stable isotope record are associated with TC deposits and are most easily explained by large influxes of 18O-depleted meteoric waters typical of intense tropical storms. There is potential for this technique to be used to identify TC landfalls that are not represented by overwash deposits. We, however, propose a more conservative approach and suggest this technique be used to validate the origin of a storm deposit and reduce the odds of a type 1 error.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号