首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stable isotope analysis of ostracod shells is used routinely for palaeoenvironmental studies of ostracod-bearing records. Sample treatment usually involves the disaggregation of sediments and sieving; before the sieving residues were washed with water onto petri dishes and oven-dried. In our study, we compared δ18O and δ13C values of shells that were oven-dried from water and from ethanol alternatively. Large isotopic differences of up to 3‰ were determined for δ18O values, whereas differences in δ13C values were less pronounced with differences of up to 1.6‰. Stable isotope values of shells dried from water were lower for both oxygen and carbon as a result of calcite crystals precipitated on the shell surfaces during the drying process. Therefore, ostracod shells for stable isotope analysis should not be prepared by drying from water. Instead, shells should be dried from ethanol to obtain reliable stable isotope data; likewise freeze-drying is expected to provide trustworthy results.  相似文献   

2.
Stable isotopes and trace elements in ostracod shells have been used widely in paleolimnological investigations of past lake hydrochemistry and climate because they provide insights into past water balance and solute evolution of lakes. Regional differences in lake characteristics and species-specific element fractionation, however, do not permit generalization of results from other regions or ostracod species to the southern Tibetan Plateau, in part because most common taxa from the southern Tibetan Plateau are endemic to the area. This study evaluated relations between present-day environmental conditions and the geochemical composition of modern ostracod shells from the southern Tibetan Plateau, to assess the suitability of using shell chemistry to infer hydrological conditions. We studied nine lakes and their catchments, located along a west–east transect in the south-central part of the Tibetan Plateau. Stable oxygen and carbon isotope values and trace element concentrations in recent shells from the four most abundant ostracod species (Leucocytherella sinensis, ?Leucocythere dorsotuberosa, Limnocythere inopinata, Tonnacypris gyirongensis) were measured, together with hydrochemical properties of host waters at the time of sampling. Results revealed significant between-species differences in stable isotope fractionation and trace element incorporation into shell calcite. Stable oxygen and carbon isotope values of ostracod shells were correlated significantly with the stable isotope composition of the respective water body \( \left( {\updelta^{18} {\text{O}}_{{{\text{H}}_{ 2} {\text{O}}}} \,{\text{and }}\updelta^{13} {\text{C}}_{{{\text{H}}_{ 2} {\text{O}}}} } \right) \), reflecting salinity and productivity, respectively. Offsets between δ18Oshell and δ13Cshell and inorganic calcite, the latter representing isotopic equilibrium, suggest shell formation of T. gyirongensis during spring melt. L. sinensis reproduces throughout the monsoon season until September and shows several consecutive generations, and L. inopinata molts to the adult stage after the monsoon season in August/September. The influence of pore water δ13C was displayed by L. inopinata, suggesting shell calcification within the sediment. Mg/Cashell is primarily influenced by water Mg/Ca ratios and salinity and confirms the use of this shell ratio as a proxy for precipitation-evaporation balance and lake level. In addition, Sr/Ca and Ba/Ca can be used to infer changes in salinity, at least in closed-basin lakes with calcite saturation. Observed effects of water Sr/Ca and salinity on Sr/Ca incorporation are biased by the presence of aragonite precipitation in the lakes, which removes bioavailable Sr from the host water, resulting in low Sr/Cashell values. Changes in carbonate mineralogy affect the bioavailability of trace elements, a process that should be considered in paleoclimate reconstructions. Oxygen isotopes and Mg/Cashell ratios were unaffected by water temperature. Positive correlations among Fe/Ca, Mn/Ca and U/Ca in ostracod shells, and their negative correlation with δ13C, which reflects organic matter decay, show the potential to infer changes in redox conditions that can be used to reconstruct past oxygen supply to bottom waters and thus past water-circulation changes within lakes. The intensity of microbial activity, associated with organic matter decomposition, can be inferred from U/Ca ratios in ostracod shells. These findings highlight the value of fossil ostracod records in lake deposits for inferring paleoenvironmental conditions on the southern Tibetan Plateau.  相似文献   

3.
A late Holocene palaeolimnological record for central Mexico has been obtained from Lake Pátzcuaro, using recent and fossil ostracods. Lake Pátzcuaro, Michoacán, is a closed-basin lake which responds rapidly to changes in the ratio of precipitation/evaporation in the region. The record from a single lake-sediment core, dated by AMS radiocarbon method, covers the last ~3,530 yrs, and is based on ostracod faunal palaeoecology coupled with analysis of the stable-isotope (18O/16O and 13C/12C) composition of ostracod valves. The faunal distribution is determined by the presence or absence of aquatic vegetation and, to a lesser extent, salinity. The 18O/16O and 13C/12C ratios in ostracod calcite show good agreement with palaeolimnological inferences from the faunal assemblages, principally recording changing precipitation/evaporation and primary-productivity levels, respectively. Wetter conditions existed in central Mexico between approximately ~3,600 and ~2,390 yr BP, between ~1,330 to ~1,120 yr BP, and from ~220 yr BP to present, characterised by fluctuating lake levels. A dilution of the sediment load in the lake reduced turbidity levels allowing for a marked increase in productivity. During these phases, the combination of a deeper lake and increased macrophyte cover reduced the degree of mixing of the waterbody. In the earliest of these phases there was sufficient stratification of the waterbody for methanogenesis to occur in the sediment interstices. The wet phases were separated by prolonged dry periods, during which time the climatic conditions were relatively stable. Good agreement was found between the findings of this study and others from the central Mexican/Caribbean region suggesting that abrupt climate changes occurred at least at a regional scale.  相似文献   

4.
The aim of this study is to describe ostracods from freshwater habitats in the Siberian Arctic in order to estimate the present-day relationships between the environmental setting and the geochemical properties of ostracod calcite. A special focus is on the element ratios (Mg/Ca, Sr/Ca), and the stable isotope composition (δ18O, δ13C), in both ambient waters and ostracod calcite. The most common species are Fabaeformiscandona pedata and F. harmsworthi with the highest frequency in all studied waters. Average partition coefficients D(Sr) of F. pedata are 0.33 ± 0.06 (1σ) in females, and 0.32 ± 0.06 (1σ) in males. A near 1:1 relationship of δ18O was found, with a mean shift of Δmean = 2.2‰ ± 0.5 (1σ) to heavier values in ostracod calcite of F. pedata as compared to ambient waters. The shift is not dependent on δ18Owater, and is caused by metabolic (vital) and temperature effects. Temperature-dependence is reflected in the variations of this shift. For ostracod calcite of F. pedata a vital effect as compared to inorganic calcite in equilibrium was quantified with 1.4‰. Results of this study are valuable for the palaeoenvironmental interpretation of geochemical data of fossil ostracods from permafrost deposits.  相似文献   

5.
We used ostracod species assemblages and their δ18O values in a 32-m sediment core from Lake Qinghai, China, along with information from cores collected at other sites in the lake, to infer lake evolution and hydroclimate changes since the last glacial. Dominant ostracod species Ilyocypris bradyi and its low δ18O values showed that Lake Qinghai was small in size or even consisted of several playa lakes, and the 1F core site could have even been in a wetland setting, under cold and dry climate conditions before 15.0 ka. Presence of Limnocythere inopinata with low δ18O values, and absence of I. bradyi after 15.0 ka, indicate the lake area increased or that the playas merged. The decrease or disappearance of ostracods with high δ18O values showed that the lake shrunk under dry climate from 12.0 to 11.6 ka. After 11.6 ka, hydroclimate shifts inferred from ostracod species changes (Eucypris mareotica and L. inopinata) and their δ18O values were as follows: (1) 11.6–7.4 ka—larger, but still small lake area with greater moisture availability under primarily dry climate conditions, (2) 7.4 to 3.2 ka—increasing lake level under a warmer and wetter climate, and (3) 3.2 ka to present—stable, large, brackish lake. The low ratio of lake water volume to runoff, and close proximity of the core site to freshwater input from the river mouth would have resulted in relatively lower ostracod δ18O values when Lake Qinghai was small in area during the interval from 32.0 to 15.0 ka. Lower ostracod δ18O values during interstadials and throughout the entire Last Glacial Maximum and early deglacial (ca. 24.0–16.0 ka) were caused by a greater contribution of seasonal meltwater from ice or snow and low incoming precipitation δ18O values related to cold climate conditions in the region at that time.  相似文献   

6.
We investigated oxygen and carbon isotopes of bulk carbonate and of benthic freshwater ostracods (Candona candida) in a sediment core of Lago Piccolo di Avigliana that was previously analyzed for pollen and loss-on-ignition, in order to reconstruct environmental changes during the late glacial and early Holocene. The depth–age relationship of the sediment core was established using 14 AMS 14C dates and the Laacher See Tephra. While stable isotopes of bulk carbonates may have been affected by detrital input and, therefore, only indirectly reflect climatic changes, isotopes measured on ostracod shells provide unambiguous evidence for major environmental changes. Oxygen isotope ratios of ostracod shells (δ18OC) increased by ~6‰ at the onset of the Bølling (~14,650 cal BP) and were ~2‰ lower during the Younger Dryas (~12,850 to 11,650 cal BP), indicating a temporal pattern of climate changes similar to the North Atlantic region. However, in contrast to records in that region, δ18OC gradually decreased during the early Holocene, suggesting that compared to the Younger Dryas more humid conditions occurred and that the lake received gradually increasing input of 18O-depleted groundwater or river water.  相似文献   

7.
We quantified differences in oxygen isotope fractionation among three biostratigraphically important subfossil ostracod species (Metacypris cordata, Pseudocandona rostrata and Candonopsis kingsleii) from an early Holocene freshwater tufa layer in northern Estonia. Estimated mean δ18O values are −10.05‰ for M. cordata, −9.34‰ for C. kingsleii and −8.75‰ for P. rostrata. All three species exhibit positive offset from the weighted mean annual δ18O of contemporary precipitation (−10.7‰ in δ18OV-PDB) and from the mean δ18O value of authigenic tufa carbonate (−10.64‰) in the ostracod-bearing layer. Assuming that the known oxygen isotope fractionation in P. rostrata (+2.5‰) and M. cordata (+1.5‰) has remained constant over time, the theoretical δ18OV-SMOW of the early Holocene lake water was calculated to have been between −11.52 and −11.92‰, slightly less negative than the local Ordovician groundwater (−11.7 to −12.2‰). δ18O values of the tufa carbonate differ by +0.6 to +1.0‰ from the calculated theoretical isotope composition (δ18OV-PDB) of lake water, indicating that the tufa also did not precipitate in isotopic equilibrium with ambient waters. Results show that the greater the δ18O offset from the calculated, theoretical isotope composition of lake water for an ostracod species, the lower is its preferred mean July temperature. Both our data and earlier published results on δ18O values in Holocene lacustrine carbonates and ostracods from north-eastern Europe, display pronounced decreases in δ18O with an increase in latitude of the study site. This suggests that temperature-dependent, and therefore latitude-dependent isotopic composition of meteoric waters controlled the δ18O values in lacustrine tufa and ostracods throughout the Holocene.  相似文献   

8.
东台沟实验流域降水氧同位素特征与水汽来源   总被引:17,自引:3,他引:14  
运用环境同位素技术研究水循环中水分子组成发生的微观变化,是兴起于20世纪中期研究宏观、微观水文过程机理的新技术。研究流域降水同位素时间和空间变化规律以及与降水要素的相关关系,对于研究流域水资源属性具有重要的理论与实践意义。本文以北京市怀柔区汤河口镇东台沟实验流域为研究对象,研究了该流域2003年7月至10月降水氧同位素含量及降水的时空变化,分析了降水δ18O与降水量、高程及空气湿度的关系,评估了雨量、高程及空气湿度等因子对降水过程的影响及作用,阐明了其间实验流域降水δ18O的时空分布规律,并得出实验流域在实验期间降水的主要水汽来源为由东南向西北方向。  相似文献   

9.
Oxygen isotope analysis of the adult ostracod Eucypris mareotica cultured at controlled temperatures (10, 15, and 19°C) was used to measure isotopic fractionation during shell calcification. The ostracod shells that precipitated at experimental temperatures are almost in isotopic equilibrium with the culture water as compared to the oxygen isotope fractionation of inorganic carbonates. Moreover, they had almost constant offsets from equilibrium based on the oxygen isotope fractionation of inorganic carbonates. The δ18O values of ostracod shells from the 10°C cultures were higher than those of the 15 and 19°C cultures by 1.6 and 2.7‰, respectively. The observed fractionations are shown by the regression equations: *20c 10° \textC:d 1 8 \textO\textostracod = 1. 1 7+ 0. 5 7d 1 8 \textO\textwater 1 5° \textC:d 1 8 \textO\textostracod = - 0. 4 8+ 0. 6d 1 8 \textO\textwater 1 9° \textC:d 1 8 \textO\textostracod = - 1. 6+ 0. 6d 1 8 \textO\textwater \begin{array}{*{20}c} { 10^\circ {\text{C}}:\delta^{ 1 8} {\text{O}}_{\text{ostracod}} = 1. 1 7+ 0. 5 7\delta^{ 1 8} {\text{O}}_{\text{water}} } \\ { 1 5^\circ {\text{C}}:\delta^{ 1 8} {\text{O}}_{\text{ostracod}} = - 0. 4 8+ 0. 6\delta^{ 1 8} {\text{O}}_{\text{water}} } \\ { 1 9^\circ {\text{C}}:\delta^{ 1 8} {\text{O}}_{\text{ostracod}} = - 1. 6+ 0. 6\delta^{ 1 8} {\text{O}}_{\text{water}} } \\ \end{array} The fractionation factors (α) are slightly lower for the 15 and 19°C cultures, but slightly higher for the 10°C culture, as compared to inorganic carbonates (O’Neil et al. in J Chem Phys 51:5547–5558, 1969). The oxygen fractionation factors of E. mareotica are very close to those of synthetic calcite formed in isotopic equilibrium. The ‘vital offsets’ of valve-δ18O for E. mareotica is so small that we can neglect its effect when using the δ18O of E. mareotica living in lake waters with high pH and salinity to reconstruct the paleoenvironment. The paleotemperature or paleoisotopic composition of lake water interpreted from a core of lacustrine sediment may be closer to the true values when the δ18O data for E. mareotica are used.  相似文献   

10.
We report δ18O and δ13C values of 21 fossil shells from the aquatic gastropod Radix from a sediment core taken in the eastern basin of Lake Karakul, Tajikistan (38.86–39.16°N, 73.26–73.56°E, 3,928 m above sea level) and covering the last 4,200 cal yr BP. The lake is surrounded by many palaeoshorelines evidencing former lake-level changes, most likely triggered by changes in meltwater flux. This hypothesis was tested by interpreting the isotope ratios of Radix shells together with δ18O values of Ostracoda and of authigenic aragonite. The mean δ18O values of Radix and Ostracoda fall along the same long-term trend indicating a change in the isotopic composition of precipitation, which contributed to the glaciers in the catchment as snow and finally as melt water to the lake. The sclerochronological δ18O and δ13C patterns in Radix shells provide seasonal weather information, which is discussed in context with previously proposed climatic changes during the last 4,200 cal yr BP. The period between ~4,200 and 3,000 cal yr BP was characterized by stepwise glacier advance in the catchment most likely due to a precipitation surplus. Subsequently the climate remained relatively cold but the lake level fluctuated, as indicated by ostracod shell isotope data. From ~1,800 cal yr BP the sclerochronological patterns provide evidence for increasing melt water flux and transport of allochthonous carbon into the lake, most likely due to an accelerated glacier retreat. The period around 1,500 cal yr BP was characterized by strong warming, increasing meltwater flux, glacier retreat and an increasing lake level. Warm conditions continued until ~500 cal yr ΒP probably representing the end of the Medieval Warm Period. A short relatively cold (dry?) period and a lower lake level are assumed for ~350 cal yr BP, possibly an analogue to the Maunder Minimum cooling in the North Atlantic region. Our results show that the lake system is complex, and that changes were triggered by external forcing and feedbacks. The similarity of δ18O values in Radix and ostracod shells demonstrates that both archives provide complementary information.  相似文献   

11.
Sediment cores from Lakes Punta Laguna, Chichancanab, and Petén Itzá on the Yucatan Peninsula were used to (1) investigate “within-horizon” stable isotope variability (δ18O and δ13C) measured on multiple, single ostracod valves and gastropod shells, (2) determine the optimum number of individuals required to infer low-frequency climate changes, and (3) evaluate the potential for using intra-sample δ18O variability in ostracod and gastropod shells as a proxy measure for high-frequency climate variability. Calculated optimum sample numbers (“n”) for δ18O and δ13C in the ostracod Cytheridella ilosvayi and the gastropod Pyrgophorus coronatus vary appreciably throughout the cores in all three lakes. Variability and optimum “n” values were, in most cases, larger for C. ilosvayi than for P. coronatus for δ18O measurements, whereas there was no significant difference for δ13C measurements. This finding may be explained by differences in the ecology and life history of the two taxa as well as contrasting modes of calcification. Individual δ18O measurements on C. ilosvayi in sediments from Lake Punta Laguna show that samples from core depths that have high mean δ18O values, indicative of low effective moisture, display lower variability, whereas samples with low mean δ18O values, reflecting times of higher effective moisture, display higher variability. Relatively dry periods were thus consistently dry, whereas relatively wet periods had both wet and dry years. This interpretation of data from the cores applies to two important periods of the late Holocene, the Maya Terminal Classic period and the Little Ice Age. δ18O variability during the ancient Maya Terminal Classic Period (ca. 910–990 AD) indicates not only the driest mean conditions in the last 3,000 years, but consistently dry climate. Variability of δ13C measurements in single stratigraphic layers displayed no relationship with climate conditions inferred from δ18O measurements.  相似文献   

12.
Many studies in continental areas have successfully used the oxygen isotope composition of fossil ostracod valves to reconstruct past hydrological conditions associated with large changes in climate. Yet, ostracods are known to crystallise their valves out of isotopic equilibrium for oxygen and they generally have higher 18O contents compared to inorganic calcite grown at equilibrium under the same conditions. A review of vital offsets determined for continental ostracods indicates that vital offsets might change from site to site, questioning a potential influence of environmental conditions on oxygen isotope fractionation in ostracods. Results from the literature suggest that pH has no influence on ostracod vital offset. A re-evaluation of results from Li and Liu (J Paleolimnol 43:111–120, 2010) suggests that salinity may influence oxygen isotope fractionation in ostracods, with lower vital offsets for higher salinities. Such a relationship was also observed for the vital offsets determined by Chivas et al. (The ostracoda—applications in quaternary research. American Geophysical Union, Washington, DC, 2002). Yet, when results of all studies are compiled, the correlation between vital offsets and salinity is low while the correlation between vital offsets and host water Mg/Ca is higher, suggesting that ionic composition of water and/or relative abundance of major ions may also control oxygen isotope fractionation in ostracods. Lack of data on host water ionic composition for the different studies precludes more detailed examination at this stage. Further studies such as natural or laboratory cultures done under strictly controlled conditions are needed to better understand the potential influence of varying environmental conditions on oxygen isotope compositions of ostracod valves.  相似文献   

13.
The utility of ostracod-based palaeoenvironmental reconstruction was evaluated using instrumental data for Lake Qarun, Egypt. The euryhaline ostracod Cyprideis torosa was the only species found in the lake’s recent sediment record. This species is known to tolerate salinity levels and water solute compositions that may prevent colonisation by other species. Oxygen and carbon isotope ratios of ostracod carbonate from lake sediments covary with changes in instrumental values for lake level and salinity for the period 1890–1974. δ13C-values correlate negatively with lake water salinity (r 2 = 0.87) and δ18O-values correlate negatively with measured lake level changes (r 2 = 0.41). Other ostracod proxy data provide qualitative information on lake level trends. Fossil assemblage data (juvenile/adult and valve/carapace ratios and valve preservation) provide information on wave energy. Ecophenotypic variation of C. torosa valves provided some useful palaeolimnological information. Sr/Ca and Mg/Ca ratios in ostracods were not found to reflect water composition, due to the uncoupling of these ratios with salinity in Lake Qarun. Overall, our results highlight the need to calibrate ostracod proxy data in modern systems prior to their use for palaeoenvironmental reconstruction.  相似文献   

14.
Several techniques are available to examine the isotopic composition of historic lake waters, providing data that can subsequently be used to examine environmental changes. A recently-developed technique is the stable oxygen isotope analysis of subfossil chironomid (Diptera: Chironomidae) head capsules (mostly chitin) preserved in lake sediments. This technique involves a high Temperature Conversion Elemental Analyzer (TC/EA), which has been a relatively recent addition to the suite of online peripherals for analyzing the stable isotopic composition of organic samples. The highly precise and accurate 18O/16O and D/H measurements obtainable using the TC/EA with samples in the microgram range make this instrumentation suitable for studying geochemical and biological processes. Preparation of organic samples for isotopic analysis typically requires first weighing each sample into silver/tin capsules. These capsules can introduce oxygen and hydrogen contamination (a “blank effect”), which is especially problematic for analysis of small organic samples (e.g. less than 100 μg). Here we tested tin and silver capsules from two manufacturers and a range of sizes to assess contamination to small organic samples on the TC/EA. We also assessed how a method for cleaning silver capsules affected our analysis of commercial chitin. In general, capsules made of silver have less detectible oxygen than those made of tin, and capsules from the two manufacturers varied in their detectible oxygen. There was no detectable H contamination from silver capsules. In addition to our empirical findings, we present a model demonstrating the influence that contaminant oxygen can have on the δ18O of small organic samples. Sample mass becomes an important issue for such analyses. In light of our findings, we recommend a minimum sample mass ≥50 μg (approximately 120 whole chironomid head capsules) on a TC/EA-IRMS (Deltaplus XP system). Finally, we present a detailed protocol for preparing and transferring chironomid head capsules into silver capsules that minimizes the influence of contaminant oxygen. This protocol provides the paleo-community with another potential method for reconstructing paleoenvironments.  相似文献   

15.
We studied the potential for using stable carbon and nitrogen isotope ratios in sediment profiles to trace external nutrient sources and eutrophication at four coastal sites in the Baltic Sea. The sites are characterized by various present and past activities in their catchments, including residential development, sugar processing, agriculture and fish farming. Radiometrically dated sediment cores were analysed for nutrient isotope ratios, organic carbon and total nitrogen. Background information was collected from historical sources, literature and water monitoring data. Despite the multiple organic enrichment sources, it was possible to identify individual sources and processes in the sediment profiles using stable isotope analysis of bulk sediment. The largest changes in δ15N values were seen at sites receiving urban wastewaters. The site that received effluents from a sugar cane (C4-plant) refinery in the past showed a clear effect on δ13C values compared to the site that received wastewater from a sugar beet (C3-plant) factory. Fish farming produced detectable, albeit minor changes in the sediment profile. Slightly lower δ13C values reflected the influence of fish feed and fish metabolism, and higher δ15N values likely indicated the influence of increased sediment denitrification. The land-sea connection via river discharge was observable in the overall δ13C levels of the sediment cores. Our results suggest that temporal changes in sources of organic matter enrichment can be detected in well-dated coastal sediment cores using nutrient stable isotope analyses, even at sites subjected to multiple impacts. There is not, however, a simple relationship between sediment stable isotope profiles and the eutrophication history of our study sites.  相似文献   

16.
Ten meters of lacustrine deposits retrieved from Lake Pergusa (Sicily, southern Italy) were investigated through stable isotope composition (carbon and oxygen) of authigenic carbonate (calcareous muds) and freshwater shells. The core chronology was established through three AMS dates, and by correlation with a previously dated nearby core. Stable isotope data show that the lake water evolution was mainly dominated by evaporation. Between ca. 20 and 28 ka the recovered sediments have very high δ18O values, likely corresponding to very dry climatic conditions. The observed rapid oscillations in the δ18O of the recovered sediments during this period also suggest important climatic fluctuations. More humid conditions dominated during the Holocene period, with the wettest interval occurring between ca. 9000 and 3000 years BP. Late Holocene sediments represent a substantial return to drier conditions. The available pollen data from a nearby core substantially confirm this general climatic trend during the Holocene. The positive correlation between δ13C of the calcareous muds and carbonate content suggests that biological activity played a key role in the carbon isotope evolution of dissolved inorganic carbon. However, a clear climatic signal is not evident from the δ13C record.  相似文献   

17.
Stable hydrogen and oxygen isotope has important implication on water and moisture transportation tracing research. Based on stable hydrogen (δD) and oxygen (δ18O) isotope using a Picarro L1102-i and water chemistry (e.g. major ions, pH, EC and TDS) measurement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry (e.g. TDS, pH, EC, Ca2+, Mg2+, Na+ and Cl-) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou glacier basin during June 2012 to September 2013. Results showed that δD and δ18O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of δD and δ18O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably implied that the glacier runoff was mainly originated from glacier melting and precipitation supply. The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO3-SO4 and Ca-Mg-HCO3-SO4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future.  相似文献   

18.
Sediment core PI-6 from Lake Petén Itzá, Guatemala, possesses an ~85-ka record of climate and environmental change from lowland Central America. Variations in sediment lithology suggest large and abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. We measured stable carbon isotope ratios of total organic carbon and long-chain n-alkanes from the core, the latter representing a largely allochthonous (terrestrial) source of organic matter, to reveal past shifts in the relative proportion of C3–C4 terrestrial biomass. We sought to test whether stable carbon isotope results were consistent with other paleoclimate proxies measured in the PI-6 core, and if extraction and isotope analysis of n-alkanes is warranted. The largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the last glacial maximum indicate moderate precipitation with little fluctuation. The deglacial was a period of pronounced climate variability, e.g. a relatively warm and moist Bølling–Allerød, but a cool and dry Younger Dryas. Arid periods of the deglacial were inferred from samples with high δ13C values in total organic carbon, which reflect times of greater proportions of C4 plants. These inferences are supported by stable isotope measurements on ostracod shells and relative abundance of grass pollen from the same depths in core PI-6. Similar trends in carbon stable isotopes measured on bulk organic carbon and n-alkanes suggest that carbon isotope measures on bulk organic carbon in sediments from this lake are sufficient to infer past climate-driven shifts in local vegetation.  相似文献   

19.
Stable isotopes and trace-element contents of ostracod (Candona neglecta) valves mostly from the Holocene portion of two assembled cores from Petit Lac (Lake Geneva, Switzerland-France) were analysed in order to depict the geochemical record of post-glacial environmental changes of this lake. Additional stable isotope and trace element data from the gastropod Bithynia tentaculata (shells and opercula) from some intervals of these cores, as well as previous data from bulk carbonate from the lower part of the studied intervals were also considered. Mg/Ca and Sr/Ca molar ratios for the Holocene lake water have been estimated from evaluations of the partitioning coefficients for Mg and Sr for C. neglecta and B. tentaculata taking into account the modern-lake water composition. This study shows an overall gentle trend to higher δ18O values in C. neglecta valves from the Boreal interval (mean −8.44‰) to the upper part of the core (mean −8.11‰). This trend is superimposed to higher frequency oscillations of stable isotope values and trace element ratios, especially through the upper Older Atlantic and the Subboreal. The overall isotopic oxygen trend includes several shifts in δ18O of about 1‰. These shifts are interpreted as major regional-global climate changes that have also been observed in other coeval δ18O and pollen records which reflect the Holocene climate variability in other European basins. Especially well-defined peaks in some episodes like Older Atlantic (~8200 yr BP), Younger Atlantic – Subboreal transition (~5600 yr BP) and early Subatlantic (~ 2500 yr BP) correspond to well-recognized events in globally-distributed records. Some of these shifts are correlated with pulses in the lake-level curve of the Lake Geneva. An erratum to this article is available at .  相似文献   

20.
曾承 《盐湖研究》2011,19(2):20-24
青海湖Q14B沉积物柱芯560~415 cm(约14.0~10.5 ka B.P.)段,介壳1δ8O高于无机碳酸盐1δ8O可能反映了此时青海湖表层水温高于底层水温;介壳1δ8O与无机碳酸盐1δ8O之间的较小差值可能揭示了此时青海湖水位很浅,气候干冷;介壳1δ8O变幅大于无机碳酸盐1δ8O变幅,则可能源于此时青海湖水位大幅度波动导致的底层水温变幅超过表层,以及无机碳酸盐1δ8O测自全碳酸盐所致。在利用湖泊碳酸盐1δ8O进行气候及环境变化研究时,有必要分别测试不同种属介形虫及不同无机碳酸盐矿物的同位素值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号