首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   17篇
  国内免费   4篇
测绘学   6篇
大气科学   46篇
地球物理   73篇
地质学   153篇
海洋学   56篇
天文学   64篇
自然地理   20篇
  2023年   4篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   10篇
  2016年   11篇
  2015年   5篇
  2014年   10篇
  2013年   16篇
  2012年   11篇
  2011年   22篇
  2010年   28篇
  2009年   24篇
  2008年   13篇
  2007年   16篇
  2006年   15篇
  2005年   13篇
  2004年   16篇
  2003年   11篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   6篇
  1998年   6篇
  1996年   13篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   10篇
  1981年   3篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1975年   10篇
  1974年   6篇
  1973年   12篇
  1972年   3篇
  1967年   1篇
  1962年   1篇
排序方式: 共有418条查询结果,搜索用时 15 毫秒
111.
Helicopter-borne frequency-domain electromagnetic (HEM) surveys are used for fast high-resolution, three-dimensional resistivity mapping. Standard interpretation tools are often based on layered earth inversion procedures which, in general, explain the HEM data sufficiently. As a HEM system is moved while measuring, noise on the data is a common problem. Generally, noisy data will be smoothed prior to inversion using appropriate low-pass filters and consequently information may be lost.For the first time the laterally constrained inversion (LCI) technique has been applied to HEM data combined with the automatic generation of dynamic starting models. The latter is important because it takes the penetration depth of the electromagnetic fields, which can heavily vary in survey areas with different geological settings, into account. The LCI technique, which has been applied to diverse airborne and ground geophysical data sets, has proven to be able to improve the HEM inversion results of layered earth structures. Although single-site 1-D inversion is generally faster and — in case of strong lateral resistivity variations — more flexible, LCI produces resistivity — depth sections which are nearly identical to those derived from noise-free data.The LCI results are compared with standard single-site Marquardt–Levenberg inversion procedures on the basis of synthetic data as well as field data. The model chosen for the generation of synthetic data represents a layered earth structure having an inhomogeneous top layer in order to study the influence of shallow resistivity variations on the resolution of deep horizontal conductors in one-dimensional inversion results. The field data example comprises a wide resistivity range in a sedimentary as well as hard-rock environment.If a sufficient resistivity contrast between air and subsurface exists, the LCI technique is also very useful in correcting for incorrect system altitude measurements by using the altitude as a constrained inversion parameter.  相似文献   
112.
Deposits in coastal lakes in northernmost Norway reveal that the Storegga tsunami propagated well into the Barents Sea ca. 8100–8200 years ago. A tsunami deposit – found in cores from five coastal lakes located near the North Cape in Finnmark – rests on an erosional unconformity and consists of graded sand layers and re‐deposited organic remains. Rip‐up clasts of lake mud, peat and soil suggest strong erosion of the lake floor and neighbouring land. Inundation reached at least 500 m inland and minimum vertical run‐up has been reconstructed to 3–4 m. In this part of the Arctic coastal lakes are usually covered by >1 m of solid lake ice in winter. The significant erosion and deposition of rip‐up clasts indicate that the lakes were ice free and that the ground was probably not frozen. We suggest that the Storegga slide and ensuing tsunami happened sometime in the summer season, between April and October. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
113.
114.
Patterns in the spatial or temporal distribution of genotypes may be indicative of natural selection. Previous work on the woolly mammoth melanocortin-1 receptor (Mc1r) gene identified three polymorphic positions that suggest Pleistocene populations may have harboured both light- and dark-haired mammoths (Rompler et al., 2006, 313: 62). Here, we extend this work and present the first population-level analysis of a functional gene in an extinct species. We genotyped the Mc1r gene in 47 woolly mammoth samples excavated from sites across the central portion of the woolly mammoths’ former range to examine the extent of variation of this polymorphism through time and across space. Only one individual was found to be heterozygous, indicating that the frequency of the ‘light’ mutant allele was very low. We conclude that light-coloured woolly mammoths would have been very rare, and may even have been non-existent if the ‘light’ mutant allele was strongly selected against in its homozygotic form. With the increasing availability of large-scale sequencing technologies, population-level datasets capable of identifying local adaptation will become increasingly attainable.  相似文献   
115.
Seventeen trace elements (Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Rb, Re, Sb, Se, Te, Tl, U and Zn) were measured by neutron activation analysis in 8 C1 samples (1 Alais, 3 Ivuna, 4 Orgueil) and in 3 C2 samples (one each of Mighei, Murchison, Murray). The results show far less scatter than earlier literature data. The standard deviation of a single measurement from the mean of 8 C1 samples lies between 2 and 14 per cent, except for the following 4 elements: Au ±18 per cent, Ag ±22 per cent, Rb ±19 per cent and Br ±33 per cent. The first two probably reflect contamination and sample heterogeneity, the last two, analytical error. Apparently C1 chondrites have a far more uniform composition than some authors have claimed.The new data suggest significant revisions in cosmic abundance for the following elements (old values in parentheses): Zn 1250 (1500), Cd 1.51 (2.12), Ir 0.72 (0.43) atoms/106 Si atoms. The Br value is also lower, 6.8 vs 20.6, but may be affected by analytical error.Relative to C1 chondrites, the C2 chondrites Mighei, Murchison and Murray are depleted in volatile elements by a factor of 0.508 ± 0.038, much more constant than indicated by oldor data. Ordinary chondrites also show a more uniform depletion relative to the new C1 data. The mean depletion factor of Sb, F, Cu, Ga, Ge, Sn, S, Se, Te and Ag is 0.227 ± 0.027 in H-chondrites. This constancy further strengthens the case for the two-component model of chondrite formation.  相似文献   
116.
In an attempt to characterize meteoritic material at the Apollo 12 site, 4 KREEP concentrates from soil 12033 have been analyzed by neutron activation analysis. These contain a meteoritic component in which siderophile Ir, Re and Sb are depleted by about a factor of 2, while volatile Se, Zn, Ag and Bi are depleted by a factor of more than 5 relative to Au. This pattern does not closely resemble any major chondrite or iron meteorite group, but is very similar to that observed in high-alkali samples from Apollo 14. The meteoritic component in KREEP at both sites is therefore predominantly derived from Imbrian ejecta. However, a second, small component of primitive composition seems to be present in Apollo 12 KREEP, judging from the slight, uniform enrichments in Ir, Re, Sb, Se and Zn relative to Au. This component does not seem to be due to micrometeorites. If it is attributed to the Copernican projectile, the crater Copernicus may have been formed by a cometary nucleus, 4 km in diameter, with an impact velocity of 30–40 km/sec. These conclusions depend critically on the assumption that the meteoritic component in Apollo 12 KREEP is representative of the entire impact.  相似文献   
117.
Extending our earlier work on 11 L-chondrites, we have measured 9 volatile elements (Ag, Bi, Cs, In, Rb, Tl, Se, Cd, Zn) by neutron activation analysis in 11 LL- and 10 E-chondrites; the first 6 elements also in 22 H-chondrites. The observed fractionation patterns are consistent with theoretical condensation curves and hence were apparently established during condensation from the solar nebula. Ordinary chondrites seem to have accreted between 420 and 500°K at P ≈ 10?5 atm; enstatite chondrites, at 460 to 520°K and P ≈ 5 x? 10?4 atm. The values for ordinary chondrites agree with O18-based temperatures by Onuma. et al. (1972) and with other characteristics such as Fe2+ content, presence of FeS and absence of Fe3O4.A few detailed trends were noted. Seven of the 54 meteorites seem to contain small amounts of a material enriched in Ag, Bi and especially T1; possibly a late condensate from a region depleted in metal. Silver shows considerable scatter, which suggests inhomogeneous distribution in the meteorites. Xenon correlates with In approximately as expected for equilibrium solubility, with some differences (petrologic type 3; E-chondrites) attributable to mineralogical factors. Meteorites of higher petrologic types are slightly deficient in Xe, probably due to gas losses during metamorphism. Cesium also appears to have been redistributed during metamorphism.Various features of the two-component model are critically examined in the light of the latest evidence. Apparently this model still is an adequate approximation of reality.  相似文献   
118.
Five lines of evidence suggest that Cl chondrites closely approximate the condensable fraction of primordial solar-system matter: continuity of isotopic and elemental abundance trends, agreement with solar and cosmic-ray abundances, fractionation patterns among chondrites, and absence of chondrules. Maximum differences between Cl abundances and true solar-system abundances are estimated as factors of 2–5 for individual elements and a factor of 1.5 or less for groups of 10 or more elements.  相似文献   
119.
Noble gas data are reported for 12 E-chondrites. Combined with literature data, they show that K-Ar ages are >4 Æ for 14 out of 18 meteorites, yet U, Th-He ages are often shorter, perhaps due to late, mild reheating. Cosmic-ray exposure ages differ systematically between types 4 and 6, with E4's mostly below 16 Myr and E6's above 30 Myr. This may mean that the E-chondrite parent body contains predominantly a single petrologic type on the (~ 1 km) scale of individual impacts, in contrast to the more thoroughly mixed parent bodies of the ordinary chondrites.The heavy noble gases consist of at least two primordial components: the usual planetary component (36Ar132Xe ~ 80) and a less fractionated, ‘subsolar’ component (2700 ≤ 36Ar132Xe ≤ 3800). The latter is found in highest concentration in the E4 chondrite South Oman (36Ar = 760 × 10?8cc/g, 36Ar132Xe = 2700). The isotopic compositions of both components are similar to typical planetary values, indicating that some factor other than mass controlled the noble gas elemental ratios. The heavy Xe isotopes occasionally show some of the lowest 134Xe132Xe and 136Xe132Xe ratios measured in bulk chondrites, suggestive of nearly fission-free Xe (e.g. 136Xe132Xe = 0.3095 ± 0.0020). Amounts of planetary gas in E4 E6 chondrites fall in the range for ordinary chondrites of types 4–6, but, in contrast to the ordinary chondrites. fail to correlate with petrologic type or volatile trace element contents. Another unusual feature of E-chondrites is that primordial Ne is present even in most 4's and 5's (20Nep ~ 1 to 7 × 10?8cc/g). with an isotopic composition consistent with planetary Ne.Analyses of mineral separates show that the planetary gases are concentrated in an HF- and HCl-insoluble mineral similar to phase Q, the poorly characterized, HNO3-soluble carrier of primordial gases in carbonaceous and ordinary chondrites. The subsolar gases, on the other hand, are located in an HCl- and HNO3-resistant phase, possibly enstatite or a minor phase included in enstatite. Much of the 129Xer (50% for E4's, > 70% for E6's) is in HCl-resistant but HF-soluble sites, suggestive of a silicate.A similar subsolar component may be responsible for the high 36Ar132Xe ratios of some C3's, unequilibrated ordinary chondrites, and the unique aubrite Shallowater. The planet Venus also has a high ArKr ratio, well above the planetary range, and hence may have acquired its noble gases from an E-chondrite-like material, similar to South Oman.  相似文献   
120.
Analytical data for the Atlantis II and Discovery deeps in the Red Sea are given. The data were collected in March and June 1976 during the 22nd cruise of R/V Akademik Kurchatov in the Indian Ocean. On board analyses were performed of density, chlorinity, Mg, Ca, Sr and trace elements. The salinity, calculated from the density, is related to the chlorinity by S = 1.67 Cl + 4.02. The Ca-salinity relation is linear for both deeps showing that intermediate waters are formed by mixing of the brines with Red Sea water (RSDW). The hot brine (62°C) in the Atlantis II deep contains approx. 80 mg/kg of Fe and Mn while the warm brine (45°C) in the Discovery deep has a very low concentration of Fe and approx. 50 mg/kg of Mn. Mixing of RSDW containing 2 ml/l of oxygen with the anoxic deep brines causes precipitation of hydrous Mn(IV) and Fe(III) hydroxides. These two processes occur at different depths in the two deeps due to the formation of the warm (48–49°) intermediate brine in the Atlantis II deep. The oxidation-hydrolysis reactions proposed are supported by alkalinity-depth profiles and measurements of pH. These reactions also explain most of the trace element distributions and the composition of the SiO2-Fe(III) hydroxide slurry recovered by some water samplers in the Atlantis II deep.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号