首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40808篇
  免费   1555篇
  国内免费   231篇
测绘学   789篇
大气科学   1819篇
地球物理   9141篇
地质学   16189篇
海洋学   3790篇
天文学   9347篇
综合类   99篇
自然地理   1420篇
  2022年   489篇
  2021年   748篇
  2020年   824篇
  2019年   1031篇
  2018年   1906篇
  2017年   1847篇
  2016年   1989篇
  2015年   974篇
  2014年   1799篇
  2013年   2487篇
  2012年   1929篇
  2011年   2223篇
  2010年   2084篇
  2009年   2185篇
  2008年   2015篇
  2007年   2173篇
  2006年   1891篇
  2005年   1044篇
  2004年   927篇
  2003年   935篇
  2002年   855篇
  2001年   855篇
  2000年   728篇
  1999年   445篇
  1998年   447篇
  1997年   484篇
  1996年   344篇
  1995年   363篇
  1994年   346篇
  1993年   289篇
  1992年   293篇
  1991年   303篇
  1990年   340篇
  1989年   279篇
  1988年   265篇
  1987年   265篇
  1986年   196篇
  1985年   309篇
  1984年   312篇
  1983年   299篇
  1982年   279篇
  1981年   254篇
  1980年   268篇
  1979年   207篇
  1978年   245篇
  1977年   205篇
  1976年   178篇
  1975年   186篇
  1974年   172篇
  1973年   207篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
941.
The bimodal volcanoplutonic (basalt-peralkaline rhyolite with peralkaline granites) association of the Noen and Tost ranges was formed 318 Ma ago in the Gobi-Tien Shan rift zone of the Late Paleozoic-Early Mesozoic central Asian rift system, the development of which was related to the movement of the continental lithosphere over a mantle hot spot. A specific feature of the Late Paleozoic rifting was that it occurred within the Middle-Late Paleozoic active continental margin of the northern Asian paleocontinent. Continental margin magmatism was followed after a short time delay by the magmatism of the Gobi-Tien Shan rift zone, which was located directly in the margin of the paleocontinent. Such a geodynamic setting of the rift zone was reflected in the geochemical characteristics of rift-related rocks. The distribution of major elements and compatible trace elements in the rift-related basic and intermediate rocks corresponds to a crystallization differentiation series. The distribution of incompatible trace elements suggests contributions from several sources. This is also supported by the heterogeneity of Sr and Nd isotopic compositions of the rift-related basaltoids: εNd(T) ranges from 4.4 to 6.7, and (87Sr/86Sr)0, from 0.70360 to 0.70427. The geochemical characteristics of the rift-related basaltoids of the Noen and Tost ranges are not typical of rift settings (negative anomalies in Nb and Ta and positive anomalies in K and Pb) and suggest a significant role of the rocks of a metasomatized mantle wedge in their source. In addition, there are high-titanium rocks among the rift-related basaltoids, whose geochemical characteristics approach those of the basalts of mid-ocean ridges and ocean islands. This allowed us to conclude that the compositional variations of the rift-related basaltoids of the Noen and Tost ranges were controlled by three magma sources: the enriched mantle, depleted mantle (high-titanium basaltoids), and metasomatized mantle wedge (medium-Ti basaltoids). The medium-titanium basaltoids were formed in equilibrium with spinel peridotites, whereas the high-titanium magmas were formed at deeper levels both in the spinel and garnet zones. It terms of geodynamics, the occurrence of three sources of the rift-related basaltoids of the Noen and Tost ranges was related to the ascent of a mantle plume with enriched geochemical characteristics beneath a continental margin, where its influence caused melting in the overlying depleted mantle and the metasomatized mantle wedge. The formation of rift-related andesites in the Noen and Tost ranges was explained by the contamination of mantle-derived basaltoid melts with sialic (mainly sedimentary) continental crustal materials or the assimilation of anatectic granitoid melts.  相似文献   
942.
Amongst all the perceptible igneous manifestations (volcanic tuffs and agglomerates, minor rhyolitic flows and andesites, dolerite dykes and sills near the basin margins, etc.) in the Vindhyan basin, the two Mesoproterozoic diamondiferous ultramafic pipes intruding the Kaimur Group of sediments at Majhgawan and Hinota in the Panna area are not only the most conspicuous but also well-known and have relatively deeper mantle origin. Hence, these pipes constitute the only yet available ‘direct’ mantle samples from this region and their petrology, geochemistry and isotope systematics are of profound significance in understanding the nature of the sub-continental lithospheric mantle beneath the Vindhyan basin. Their emplacement age (∼ 1100 Ma) also constitutes the only reliable minimum age constrain on the Lower Vindhyan Group of rocks. The Majhgawan and Hinota pipes share the petrological, geochemical and isotope characteristics of kimberlite, orangeite (Group II kimberlite) and lamproite and hence are recognised as belonging to a ‘transitional kimberlite-orangeite-lamproite’ rock type. The namemajhagwanite has been proposed by this author to distinguish them from other primary diamond source rocks. The parent magma of the Majhgawan and Hinota pipes is envisaged to have been derived by very small (<1%) degrees of partial melting of a phlogopite-garnet lherzolite source (rich in titanium and barium) that has been previously subjected to an episode of initial depletion (extensive melting during continent formation) and subsequent metasomatism (enrichment). There is absence of any subduction-related characteristics, such as large negative anomalies at Ta and Nb, and therefore, the source enrichment (metasomatism) of both these pipes is attributed to the volatile- and K-rich, extremely low-viscosity melts that leak continuously to semi-continuously from the asthenosphere and accumulate in the overlying lithosphere. Lithospheric/crustal extension, rather than decompression melting induced by a mantle plume, is favoured as the cause of melting of the source regions of Majhgawan and Hinota pipes. This paper is a review of the critical evaluation of the published work on these pipes based on contemporary knowledge derived from similar occurrences elsewhere.  相似文献   
943.
Early Proterozoic granitoids are of a limited occurrence in the Baikal fold area being confined here exclusively to an arcuate belt delineating the outer contour of Baikalides, where rocks of the Early Precambrian basement are exposed. Geochronological and geochemical study of the Kevakta granite massif and Nichatka complex showed that their origin was related with different stages of geological evolution of the Baikal fold area that progressed in diverse geodynamic environments. The Nichatka complex of syncollision granites was emplaced 1908 ± 5 Ma ago, when the Aldan-Olekma microplate collided with the Nechera terrane. Granites of the Kevakta massif (1846 ± 8 Ma) belong to the South Siberian postcollision magmatic belt that developed since ~1.9 Ga during successive accretion of microplates, continental blocks and island arcs to the Siberian craton. In age and other characteristics, these granites sharply differ from granitoids of the Chuya complex they have been formerly attributed to. Accordingly, it is suggested to divide the former association of granitoids into the Chuya complex proper of diorite-granodiorite association ~2.02 Ga old (Neymark et al., 1998) with geochemical characteristics of island-arc granitoids and the Chuya-Kodar complex of postcollision S-type granitoids 1.85 Ga old. The Early Proterozoic evolution of the Baikal fold area and junction zone with Aldan shield lasted about 170 m.y. that is comparable with development periods of analogous structures in other regions of the world.  相似文献   
944.
945.
Geochronological database considered in the work and characterizing the Anabar collision system in the Northeast Siberian craton includes coordinated results of Sm-Nd and Rb-Sr dating of samples from crustal xenoliths in kimberlites, deep drill holes, and bedrock outcrops. As is inferred, collision developed in three stages dated at 2200–2100, 1940–1760, and 1710–1630 Ma. The age of 2000–1960 Ma is established for substratum of mafic rocks, which probably originated during the lower crust interaction with asthenosphere due to the local collapse of the collision prism. Comparison of Sm-Nd and Rb-Sr isochron dates shows that the system cooling from ≈700 to ≈300°C lasted approximately 300 m.y. with a substantial lag relative to collision metamorphism and granite formation. It is assumed that accretion of the Siberian craton resulted in formation of a giant collision mountainous structure of the Himalayan type that was eroded by 1.65 Ga ago, when accumulation of gently dipping Meso-to Neoproterozoic (Riphean) platform cover commenced.  相似文献   
946.
947.
Magma mingling: Tectonic and geodynamic implications   总被引:2,自引:0,他引:2  
An attempt is made to consider the tectonic and geodynamic implications of the mingling of mafic and felsic magmas, particularly, the relationships between mafic and felsic igneous rocks in composite dikes and plutons. Magma mingling develops in suprasubduction, intraplate, and collisional settings. The attributes typical of each type of mingling are discussed with special emphasis on the magma mingling of the collisional type, which is related to synmetamorphic shearing and may be regarded as a direct indicator of synorogenic collapse of collisional structural features. This phenomenon is exemplified in the Ol’khon collisional system in Siberia.  相似文献   
948.
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号