首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   23篇
  国内免费   1篇
测绘学   7篇
大气科学   8篇
地球物理   66篇
地质学   108篇
海洋学   23篇
天文学   34篇
综合类   1篇
自然地理   26篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   7篇
  2018年   11篇
  2017年   9篇
  2016年   11篇
  2015年   13篇
  2014年   15篇
  2013年   24篇
  2012年   19篇
  2011年   11篇
  2010年   11篇
  2009年   11篇
  2008年   17篇
  2007年   10篇
  2006年   3篇
  2005年   10篇
  2004年   9篇
  2003年   5篇
  2002年   7篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   3篇
  1996年   1篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1981年   3篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1975年   3篇
  1966年   1篇
排序方式: 共有273条查询结果,搜索用时 31 毫秒
211.
In this article, we explore how Māori tribal organisations are responding to calls by other Indigenous peoples to become more sustainable in a time of climate change. From a close examination of tribal Environmental Management Plans, we move to a specific case study in the Bay of Plenty area, Ngāti Kea/Ngāti Tuara. Ultimately, we suggest that many tribal organisations are seeking to respond to climate change and transition to becoming producers of their own food and energy needs, and are often articulating these responses in relation to specific local resources and contexts.  相似文献   
212.
Natural damming of upland river systems, such as landslide or lava damming, occurs worldwide. Many dams fail shortly after their creation, while other dams are long‐lived and therefore have a long‐term impact on fluvial and landscape evolution. This long‐term impact is still poorly understood and landscape evolution modelling (LEM) can increase our understanding of different aspects of this response. Our objective was to simulate fluvial response to damming, by monitoring sediment redistribution and river profile evolution for a range of geomorphic settings. We used LEM LAPSUS, which calculates runoff erosion and deposition and can deal with non‐spurious sinks, such as dam‐impounded areas. Because fluvial dynamics under detachment‐limited and transport‐limited conditions are different, we mimicked these conditions using low and high erodibility settings, respectively. To compare the relative impact of different dam types, we evaluated five scenarios for each landscape condition: one scenario without a dam and four scenarios with dams of increasing erodibility. Results showed that dam‐related sediment storage persisted at least until 15 000 years for all dam scenarios. Incision and knickpoint retreat occurred faster in the detachment‐limited landscape than in the transport‐limited landscape. Furthermore, in the transport‐limited landscape, knickpoint persistence decreased with increasing dam erodibility. Stream capture occurred only in the transport‐limited landscape due to a persisting floodplain behind the dam and headward erosion of adjacent channels. Changes in sediment yield variation due to stream captures did occur but cannot be distinguished from other changes in variation of sediment yield. Comparison of the model results with field examples indicates that the model reproduces several key phenomena of damming response in both transport‐limited and detachment‐limited landscapes. We conclude that a damming event which occurred 15 000 years ago can influence present‐day sediment yield, profile evolution and stream patterns. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
213.
Complexity has long been recognized and is increasingly becoming mainstream in geomorphology. However, the relative novelty of various concepts and techniques associated to it means that ambiguity continues to surround complexity. In this commentary, we present and discuss a variety of recent contributions that have the potential to help clarify issues and advance the use of complexity in geomorphology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
214.
215.
216.
Combining field reconstruction and landscape evolution modelling can be useful to investigate the relative role of different drivers on catchment response. The Geren Catchment (~45 km2) in western Turkey is suitable for such a study, as it has been influenced by uplift, climate change and lava damming. Four Middle Pleistocene lava flows (40Ar/39Ar‐ dated from 310 to 175 ka) filled and dammed the Gediz River at the Gediz–Geren confluence, resulting in base‐level fluctuations of the otherwise uplift‐driven incising river. Field reconstruction and luminescence dating suggest fluvial terraces in the Geren Catchment are capped by Middle Pleistocene aggradational fills. This showed that incision of the Geren trunk stream has been delayed until the end of MIS 5. Subsequently, the catchment has responded to base‐level lowering since MIS 4 by 30 m of stepped net incision. Field reconstruction left us with uncertainty on the main drivers of terrace formation. Therefore, we used landscape evolution modelling to investigate catchment response to three scenarios of base‐level change: (i) uplift with climate change (rainfall and vegetation based on arboreal pollen); (ii) uplift, climate change and short‐lived damming events; (iii) uplift, climate and long‐lived damming events. Outputs were evaluated for erosion–aggradation evolution in trunk streams at two different distances from the catchment outlet. Climate influences erosion–aggradation activity in the catchment, although internal feedbacks influence timing and magnitude. Furthermore, lava damming events partly control if and where these climate‐driven aggradations occur. Damming thus leaves a legacy on current landscape evolution. Catchment response to long‐duration damming events corresponds best with field reconstruction and dating. The combination of climate and base level explains a significant part of the landscape evolution history of the Geren Catchment. By combining model results with fieldwork, additional conclusions on landscape evolution could be drawn. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
217.
218.
International Journal of Earth Sciences - The late stages of the Variscan orogeny are characterized by middle to lower crustal melting and intrusion of voluminous granitoids throughout the belt,...  相似文献   
219.
Research on climate change impacts, vulnerability and adaptation, particularly projects aiming to contribute to practical adaptation initiatives, requires active involvement and collaboration with community members and local, regional and national organizations that use this research for policy-making. Arctic communities are already experiencing and adapting to environmental and socio-cultural changes, and researchers have a practical and ethical responsibility to engage with communities that are the focus of the research. This paper draws on the experiences of researchers working with communities across the Canadian Arctic, together with the expertise of Inuit organizations, Northern research institutes and community partners, to outline key considerations for effectively engaging Arctic communities in collaborative research. These considerations include: initiating early and ongoing communication with communities, and regional and national contacts; involving communities in research design and development; facilitating opportunities for local employment; and disseminating research findings. Examples of each consideration are drawn from climate change research conducted with communities in the Canadian Arctic.  相似文献   
220.
Fluvial processes have the potential to obscure, expose, or even destroy portions of the archaeological record. Floodplain aggradation can bury and hide archaeological features, whereas actively migrating channels can erode them. The archaeological record preserved in the subsurface of a fluvial system is potentially fragmented and is three‐dimensionally complex, especially when the system has been subjected to successive phases of alluviation and entrenchment. A simulation model is presented to gain insight into the threedimensional subsurface distribution, visibility, and preservation potential of the archaeological record in a meander‐floodplain system as a function of geomorphic history. Simulation results indicate that fluvial cut‐fill cycles can strongly influence the density of archaeological material in the subsurface. Thus, interpretation of floodplain habitation based solely upon features visible in the shallow subsurface (through traditional techniques such as aerial photography and geophysical prospection) can be misleading. In the examples, the loss of archaeological record by channel migration ranges between 45% and 90% over 12,000 years for channel belt‐dominated systems, decreasing to 10 to 30% for rivers where the floodplain width is a multiple of channel belt width. The modeling presented can be used to test excavation strategies in relation to hypothesized scenarios of stratigraphic evolution for archaeological sites. © 2006 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号