首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1417篇
  免费   56篇
  国内免费   4篇
测绘学   19篇
大气科学   127篇
地球物理   361篇
地质学   514篇
海洋学   104篇
天文学   202篇
综合类   2篇
自然地理   148篇
  2022年   9篇
  2021年   11篇
  2020年   18篇
  2019年   27篇
  2018年   21篇
  2017年   37篇
  2016年   62篇
  2015年   48篇
  2014年   51篇
  2013年   102篇
  2012年   48篇
  2011年   66篇
  2010年   65篇
  2009年   57篇
  2008年   52篇
  2007年   53篇
  2006年   31篇
  2005年   39篇
  2004年   36篇
  2003年   28篇
  2002年   55篇
  2001年   26篇
  2000年   25篇
  1999年   20篇
  1998年   26篇
  1997年   20篇
  1996年   20篇
  1995年   15篇
  1994年   16篇
  1992年   13篇
  1991年   12篇
  1990年   15篇
  1989年   10篇
  1988年   10篇
  1987年   9篇
  1986年   15篇
  1985年   14篇
  1984年   20篇
  1983年   16篇
  1982年   19篇
  1981年   19篇
  1980年   22篇
  1979年   15篇
  1978年   29篇
  1977年   18篇
  1976年   12篇
  1975年   10篇
  1973年   12篇
  1971年   8篇
  1969年   9篇
排序方式: 共有1477条查询结果,搜索用时 46 毫秒
41.
We present a comparative analysis of 1400 data series of water chemistry (particularly nitrogen and phosphorus concentrations), phytoplankton biomass as chlorophylla (chla) concentrations, concentrations of suspended matter and Secchi depth transparency collected from the mid-1980s to the mid-1990s from 162 stations in 27 Danish fjords and coastal waters. The results demonstrate that Danish coastal waters were heavily eutrophied and had high particle concentrations and turbid waters. Median values were 5.1 μg chla 1−1, 10.0 mg DW 1−1 of suspended particles, and Secchi depth of 3.6 m. Chlorophyll concentration was strongly linked to the total-nitrogen concentration. The strength of this relationship increased from spring to summer as the concentration of total nitrogen declined. During summer, total nitrogen concentrations accounted for about 60% of the variability in chlorophyll concentrations among the different coastal systems. The relationship between chlorophyll and total phosphorus was more consistant over the year and correlations were much weaker than encountered for total nitrogen. Secchi depth could be predicted with good precision from measurements of chlorophyll and suspended matter. In a multiple stepwise regression model with In-transformed values the two variables accounted for most of the variability in water transparency for the different seasons and the period March–October as a whole (c. 80%). We were able to demonstrate a significant relationship between total nitrogen and Secchi depth, with important implications for management purposes.  相似文献   
42.
We obtain the wave velocities and quality factors of clay‐bearing sandstones as a function of pore pressure, frequency and partial saturation. The model is based on a Biot‐type three‐phase theory that considers the coexistence of two solids (sand grains and clay particles) and a fluid mixture. Additional attenuation is described with the constant‐Q model and viscodynamic functions to model the high‐frequency behaviour. We apply a uniform gas/fluid mixing law that satisfies the Wood and Voigt averages at low and high frequencies, respectively. Pressure effects are accounted for by using an effective stress law. By fitting a permeability model of the Kozeny– Carman type to core data, the model is able to predict wave velocity and attenuation from seismic to ultrasonic frequencies, including the effects of partial saturation. Testing of the model with laboratory data shows good agreement between predictions and measurements.  相似文献   
43.
44.
Comparison of Seismic Dispersion and Attenuation Models   总被引:2,自引:0,他引:2  
The frequency-dependent attenuation of seismic waves causes decreased resolution of seismic images with depth, and the difference in transmission losses induces amplitude variations with offset. Transmission losses may occur due to friction or fluid movement, or may result from scattering in thin-layer. Whatever the physical mechanism, they can often be conveniently described using an empirical formulation wherein the elastic moduli and propagation velocity are complex functions of frequency.We have compiled and compared algebraically and numerically eight different models involving complex velocity: the Kolsky-Futterman model, the power-law model, Kjartansson's model, Müller's model, Azimi's second and third model, the Cole-Cole model, and the standard linear-solid model.For two different parameter sets, the attenuation and phase velocity are computed in the seismic frequency band, and the plane-wave propagation of a Ricker wavelet for the other models is compared with that for the Kolsky-Futterman model. The first parameter set consists of parameters for each of the models calculated from expressions given in the appendix. These expressions make the different models behave similarly to the KF model. The second parameter set consists of model parameters that are numerically adapted to the KF model.By selecting proper parameters, all models, except the standard linear-solid model, show behavior similar to that of the Kolsky-Futterman model. The SLS model behaves differently from the other models as the frequency goes to zero or infinity. Broadband measurement data is needed to select a specific model for a given seismic experiment.  相似文献   
45.
46.
Two lichenometric techniques were compared in a study of lichen growth–rate in northern Sweden. The first technique, based on the maximum lichen diameter on glacier moraines, was identical to the technique used in the 1970s, whereas the other utilized the lichen diameter measured on 100 randomly selected boulders. The results indicate that it does not matter which technique is chosen, as long as the technique is used consistently on both the calibration surfaces and the surfaces to be dated. The use of data from both the 1970s and the 2000s increased the number of calibration surfaces available. The new calibration curve indicates that the age of Little Ice Age moraines was underestimated by up to about 30 years in the study conducted in the 1970s.  相似文献   
47.
48.
Stochastic Structural Modeling   总被引:3,自引:0,他引:3  
A consistent stochastic model for faults and horizons is described. The faults are represented as a parametric invertible deformation operator. The faults may truncate each other. The horizons are modeled as correlated Gaussian fields and are represented in a grid. Petrophysical variables may be modeled in a reservoir before faulting in order to describe the juxtaposition effect of the faulting. It is possible to condition the realization on petrophysics, horizons, and fault plane observations in wells in addition to seismic data. The transmissibility in the fault plane may also be included in the model. Four different methods to integrate the fault and horizon models in a common model is described. The method is illustrated on an example from a real petroleum field with 18 interpreted faults that are handled stochastically.  相似文献   
49.
We have discussed the behavior of a non-conserved scalar in the stationary, horizontally homogeneous, neutral surface-flux layer and, on the basis of conventional second-order closure, derived analytic expressions for flux and for mean concentration of a gas, subjected to a first-order removal process. The analytic flux solution showed a clear deviation from the constant flux, characterizing a conserved scalar in the surface-flux layer. It decreases with height and is reduced by an order of magnitude of the surface flux at a height equal to about the typical mean distance a molecule can travel before destruction. The predicted mean concentration profile, however, shows only a small deviation from the logarithmic behavior of a conserved scalar. The solution is consistent with assuming a flux-gradient relationship with a turbulent diffusivity corrected by the Damköhler ratio, the ratio of a characteristic turbulent time scale and the scalar mean lifetime. We show that if we use only first-order closure and neglect the effect of the Damköhler ratio on the turbulent diffusivity we obtain another analytic solution for the profiles of the flux and the mean concentration which, from an experimental point of view, is indistinguishable from the first analytic solution. We have discussed two cases where the model should apply, namely NO which, by night, is irreversibly destroyed by interaction with mainly O3 and the radioactive 220Rn. Only in the last case was it possible to find data to shed light on the validity of our predictions. The agreement seemed such that a falsification of our model was impossible. It is shown how the model can be used to predict the surface flux of 220Rn from measured concentration profiles.  相似文献   
50.
Simulation of multigaussian stochastic fields can be made after a Karhunen-Loéve expansion of a given covariance function. This method is also called simulation by Empirical Orthogonal Functions. The simulations are made by drawing stochastic coefficients from a random generator. These numbers are multiplied with eigenfunctions and eigenvalues derived from the predefined covariance model. The number of eigenfunctions necessary to reproduce the stochastic process within a predefined variance error, turns out to be a cardinal question. Some ordinary analytical covariance functions are used to evaluate how quickly the series of eigenfunctions can be truncated. This analysis demonstrates extremely quick convergence to 99.5% of total variance for the 2nd order exponential (‘gaussian’) covariance function, while the opposite is true for the 1st order exponential covariance function. Due to these convergence characteristics, the Karhunen-Loéve method is most suitable for simulating smooth fields with ‘gaussian’ shaped covariance functions. Practical applications of Karhunen-Loéve simulations can be improved by spatial interpolation of the eigenfunctions. In this paper, we suggest interpolation by kriging and limits for reproduction of the predefined covariance functions are evaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号