首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1196篇
  免费   23篇
  国内免费   3篇
测绘学   25篇
大气科学   85篇
地球物理   264篇
地质学   419篇
海洋学   112篇
天文学   198篇
综合类   3篇
自然地理   116篇
  2020年   17篇
  2019年   9篇
  2018年   17篇
  2017年   11篇
  2016年   25篇
  2015年   23篇
  2014年   29篇
  2013年   52篇
  2012年   41篇
  2011年   53篇
  2010年   41篇
  2009年   54篇
  2008年   55篇
  2007年   51篇
  2006年   37篇
  2005年   41篇
  2004年   56篇
  2003年   45篇
  2002年   47篇
  2001年   25篇
  2000年   21篇
  1999年   17篇
  1998年   10篇
  1997年   18篇
  1996年   16篇
  1995年   25篇
  1994年   12篇
  1993年   19篇
  1992年   18篇
  1991年   18篇
  1990年   10篇
  1989年   14篇
  1988年   13篇
  1987年   19篇
  1986年   17篇
  1985年   20篇
  1984年   30篇
  1983年   28篇
  1982年   18篇
  1981年   18篇
  1980年   14篇
  1979年   13篇
  1978年   11篇
  1977年   14篇
  1976年   12篇
  1975年   10篇
  1974年   7篇
  1973年   11篇
  1972年   6篇
  1970年   11篇
排序方式: 共有1222条查询结果,搜索用时 906 毫秒
961.
The thermodynamic properties of carnegieite and NaAlSiO4 glass and liquid have been investigated through C p determinations from 10 to 1800 K and solution-calorimetry measurements. The relative entropies S 298-S0 of carnegieite and NaAlSiO4 glass are 118.7 and 124.8 J/mol K, respectively. The low-high carnegieite transition has been observed at 966 K with an enthalpy of transition of 8.1±0.3 kJ/mol, and the enthalpy of fusion of carnegieite at the congruent melting point of 1799 K is 21.7±3 kJ/mol. These results are consistent with the reported temperature of the nepheline-carnegieite transition and available thermodynamic data for nepheline. The entropy of quenched NaAlSiO4 glass at 0 K is 9.7±2 J/mol K and indicates considerable ordering among AlO4 and SiO4 tetrahedra. In the liquid state, progressive, temperature-induced Si, Al disordering could account for the high configurational heat capacity. Finally, the differences between the entropies and heat capacities of nepheline and carnegieite do not seem to conform to current polyhedral modeling of these properties  相似文献   
962.
We describe the development and preliminary application of the inverse Regional Ocean Modeling System (ROMS), a four dimensional variational (4DVAR) data assimilation system for high-resolution basin-wide and coastal oceanic flows. Inverse ROMS makes use of the recently developed perturbation tangent linear (TL), representer tangent linear (RP) and adjoint (AD) models to implement an indirect representer-based generalized inverse modeling system. This modeling framework is modular. The TL, RP and AD models are used as stand-alone sub-models within the Inverse Ocean Modeling (IOM) system described in [Chua, B.S., Bennett, A.F., 2001. An inverse ocean modeling system. Ocean Modell. 3, 137–165.]. The system allows the assimilation of a wide range of observation types and uses an iterative algorithm to solve nonlinear assimilation problems. The assimilation is performed either under the perfect model assumption (strong constraint) or by also allowing for errors in the model dynamics (weak constraints). For the weak constraint case the TL and RP models are modified to include additional forcing terms on the right hand side of the model equations. These terms are needed to account for errors in the model dynamics.Inverse ROMS is tested in a realistic 3D baroclinic upwelling system with complex bottom topography, characterized by strong mesoscale eddy variability. We assimilate synthetic data for upper ocean (0–450 m) temperatures and currents over a period of 10 days using both a high resolution and a spatially and temporally aliased sampling array. During the assimilation period the flow field undergoes substantial changes from the initial state. This allows the inverse solution to extract the dynamically active information from the synthetic observations and improve the trajectory of the model state beyond the assimilation window. Both the strong and weak constraint assimilation experiments show forecast skill greater than persistence and climatology during the 10–20 days after the last observation is assimilated.Further investigation in the functional form of the model error covariance and in the use of the representer tangent linear model may lead to improvement in the forecast skill.  相似文献   
963.
Cold seep communities discovered at three previously unknown sites between 600 and 1000 m in Monterey Bay, California, are dominated by chemoautotrophic bacteria (Beggiatoa sp.) and vesicomyid clams (5 sp.). Other seep-associated fauna included galatheid crabs (Munidopsis sp.), vestimentiferan worms (Lamellibrachia barhami?), solemyid clams (Solemya sp.), columbellid snails (Mitrella permodesta, Amphissa sp.), and pyropeltid limpets (Pyropelta sp.). More than 50 species of regional (i.e. non-seep) benthic fauna were also observed at seeps. Ratios of stable carbon isotopes (δ13C) in clam tissues near 36‰ indicate sulfur-oxidizing chemosynthetic production, rather than non-seep food sources, as their principal trophic pathway. The “Mt Crushmore” cold seep site is located in a vertically faulted and fractured region of the Pliocene Purisima Formation along the walls of Monterey Canyon ( 635 m), where seepage appears to derive from sulfide-rich fluids within the Purisima Formation. The “Clam Field” cold seep site, also in Monterey Canyon ( 900 m) is located near outcrops in the hydrocarbon-bearing Monterey Formation. Chemosynthetic communities were also found at an accretionary-like prism on the continental slope near 1000 m depth (Clam Flat site). Fluid flow at the “Clam Flat” site is thought to represent dewatering of accretionary sediments by tectonic compression, or hydrocarbon formation at depth, or both. Sulfide levels in pore waters were low at Mt Crushmore (ca 0.2 mM), and high at the two deeper sites (ca 7.011.0 mM). Methane was not detected at the Mt Crushmore site, but ranged from 0.06 to 2.0 mM at the other sites.  相似文献   
964.
Sediment-level oscillations with heights of about 6 cm and shore-normal lengths of order 10 m have been measured in the swash zone of a high-energy, coarse-sand beach. Crests of oscillations were shore parallel and continuous alongshore. The oscillations were of such low steepness (height-to-length ratio approximately 0.006) that they were difficult to detect visually. The period of oscillation ranged between 6 and 15 min and decreased landward across the swash zone. The sediment-level oscillations were progressive landward with an average migration rate in the middle to upper swash zone of 0.8 m min−1. Migration was caused mostly by erosion on the seaward flank of the crest of an oscillation during a period of net seaward sediment transport. Thus, the observed migration was a form migration landward rather than a migration involving net landward sediment transport. The observed sediment-level oscillations were different than sand waves or other swash-zone bedforms previously described.  相似文献   
965.
966.
A wealth of geologic information has been collected during studies of the Matuyama/Brunhes magnetic reversal boundary on the East Pacific Rise at 21°N. Five ALVIN and two CYANA dives, and a series of deep-tow traverses show that abyssal hills in this region of the Pacific are created near the spreading axis by inward dipping normal faulting and by back-tilting of these fault blocks. Outward dipping faults occur but are of less importance in the creation of relief. Tectonic disruption of the crust, particularly through tilting, is less pronounced than in the Atlantic. Small volcanoes approximately 50 m high and 400 m wide are common on the abyssal hills. A significant number of the volcanoes may have split apart at the spreading axis attesting to the narrowness of the crustal accretion zone on the East Pacific Rise. Active faulting is restricted to less than 10 to 12 km off-axis, although minor recent faulting may have been detected 23 km off-axis. Crustal sections exposed by faulting reveal that massive lava flows and sheet flows are common in the upper portion of oceanic layer two, but are less abundant than pillow lavas.  相似文献   
967.
We have experimented with digital processing of side scan sonar data taken in a 14 sq-km area of continental shelf offshore Southern California. The data were FM tape recorded during the survey and digitized and processed later in the laboratory. The digital image processing included both image correction and image enhancement. Geometric corrections were applied to correct for image distortions due to variable ship position and speed and sonar slant range. Enhancements that were tried included contrast stretching, band-pass filtering, image restoration (inverse filtering), and various edge enhancements such as density slicing and standard deviation filters. Interpretive procedures were also attempted and included digital mosaicking, stereoscopic viewing, and falsecolor display. The most effective processing was geometric correction combined with contrast stretching. Mosaicking proved difficult due to imprecise navigation (±50 m), but was very effective in increasing the understanding of the geologic structure in the survey area.  相似文献   
968.
Side-scan sonar records collected over an area of the North Aleutian Shelf, approximately 250 km west of the head of Bristol Bay, Alaska, identified widespread evidence of active sea floor erosion processes, including sediment transport. Thousands of sea floor depressions, many linear and some containing rippled floors, were identified in water depths of 30 to 90 m. The depressions cover approximately 40 percent of the area surveyed. The sea floor depressions are interpreted to be erosional features, and in conjunction with a field of sand waves, exemplify the dynamic nature of the ocenographic processes active on this area of the sea floor.  相似文献   
969.
An analytical model was developed for the dynamic analysis of an articulated loading platform in an operation condition, while remaining in a head seas position. The environmental excitation considered, resulting from groups of regular waves, included first- and second-order force contributions. The nylon hawser connecting the tanker to the ALP was modeled as a nonlinear spring. The hydrodynamic load on the tower was evaluated using Morison's equation, which was modified to account for the relative motion of the tower and the fluid particles. The hydrodynamic load on the tanker was calculated using linear diffraction theory based on the 2-D Helmholtz equation. The “near field” approach of Pinkster was used to evaluate the drift force.  相似文献   
970.
The dynamics of primary production and particulate detritus cycling in the Columbia River Estuary are described, with particular reference to mechanisms that account for patterns within the water column, on the tidal flats, and in the adjacent wetlands. Analysis of patterns in phytoplankton flora and biomass and in distribution of detrital particulate organic matter (DPOC) in the water column indicated that salinities of 1–5 delineated an essentially freshwater flora from a marine or euryhaline flora, and that living phytoplankton was converted to DPOC at the freshwater-brackishwater interface. Similarly, the benthic diatom assemblages on tidal flats reflected either the fresh or the brackish nature of the water inundating the flats. Emergent vascular plants were grouped into six associations by cluster analysis, the associations being separated mainly on the bases of different relative abundances of freshwater, euryhaline or brackishwater species, and on whether samples occurred in high or low marsh areas.Annual rates of net areal 24-hr production averaged 55, 16, and 403gC m−2y−1 for phytoplankton, benthic algae, and emergent vascular vegetation, respectively. Total production over the whole estuary was 17,667 metric tons C y−1 for phytoplankton, 1,545mt C y−1 for benthic algae, and 11,325mt C y−1 for emergent vascular plants, for a grand total to 30,537mt C y−1. Phytoplankton biomass turned over approximately 39 times per year on average, while benthic algae turned over about twice and emergent plants once per year.Budgets for phytoplankton carbon (PPOC) and DPOC were developed based on PPOC and DPOC import and export, grazing loss, and in situ production and conversion of PPOC to DPOC. It is suggested that 36,205mt y−1 of PPOC is converted to DPOC in the estuary, principally at the freshwater-brackishwater interface. About 40,560mt y−1 of PPOC is exported to the ocean, and 159,185mt y−1 of DPOC is transported into the marine zone of the estuary (no data are available on DPOC export to the ocean). Thus, the estuary acts principally as a conduit for the transport of particles to the sea, and only secondarily as a converter of viable phytoplankton cells to detrital carbon and as a trap for DPOC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号