首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1921篇
  免费   75篇
  国内免费   18篇
测绘学   41篇
大气科学   144篇
地球物理   539篇
地质学   656篇
海洋学   183篇
天文学   294篇
综合类   6篇
自然地理   151篇
  2021年   20篇
  2020年   26篇
  2019年   31篇
  2018年   53篇
  2017年   36篇
  2016年   58篇
  2015年   42篇
  2014年   52篇
  2013年   101篇
  2012年   61篇
  2011年   72篇
  2010年   85篇
  2009年   88篇
  2008年   72篇
  2007年   89篇
  2006年   68篇
  2005年   56篇
  2004年   57篇
  2003年   59篇
  2002年   50篇
  2001年   27篇
  2000年   35篇
  1999年   30篇
  1998年   30篇
  1997年   29篇
  1996年   27篇
  1995年   31篇
  1994年   34篇
  1993年   17篇
  1992年   34篇
  1991年   30篇
  1990年   40篇
  1989年   25篇
  1988年   27篇
  1987年   22篇
  1986年   18篇
  1985年   30篇
  1984年   41篇
  1983年   29篇
  1982年   20篇
  1981年   33篇
  1980年   26篇
  1979年   21篇
  1978年   22篇
  1977年   17篇
  1976年   13篇
  1975年   13篇
  1974年   15篇
  1973年   15篇
  1970年   14篇
排序方式: 共有2014条查询结果,搜索用时 31 毫秒
81.
Anomalies found when apportioning responsibility for streamflow depletion are examined. The anomalies arise when responsibility is assigned to the two states that contribute to depletion of Beaver Creek in the Republican River Basin in the United States. The apportioning procedure for this basin presumes that the sum of streamflow depletions, computed by comparing simulation model runs with and without groundwater pumping from individual states, approximates the streamflow depletion when both states are pumping. In the case study presented here, this presumed superposition fails dramatically. The stream drying and aquifer-storage depletion, as represented in the simulation model used for allocation, are examined in detail to understand the hydrologic and numerical basis for the severe nonlinear response. Users of apportioning procedures that rely on superposition should be aware of the presence and likely magnitude of nonlinear responses in modeling tools.  相似文献   
82.
Estuarine rearing has been shown to enhance within watershed biocomplexity and support growth and survival for juvenile salmon (Oncorhynchus sp.). However, less is known about how growth varies across different types of wetland habitats and what explains this variability in growth. We focused on the estuarine habitat use of Columbia River Chinook salmon (Oncorhynchus tshawytscha), which are listed under the Endangered Species Act. We employed a generalized linear model (GLM) to test three hypotheses: (1) juvenile Chinook growth was best explained by temporal factors, (2) habitat, or (3) demographic characteristics, such as stock of origin. This study examined estuarine growth rate, incorporating otolith microstructure, individual assignment to stock of origin, GIS habitat mapping, and diet composition along ~130 km of the upper Columbia River estuary. Juvenile Chinook grew on average 0.23 mm/day in the freshwater tidal estuary. When compared to other studies in the basin our growth estimates from the freshwater tidal estuary were similar to estimates in the brackish estuary, but ~4 times slower than those in the plume and upstream reservoirs. However, previous survival studies elucidated a possible tradeoff between growth and survival in the Columbia River basin. Our GLM analysis found that variation in growth was best explained by habitat and an interaction between fork length and month of capture. Juvenile Chinook salmon captured in backwater channel habitats and later in the summer (mid-summer and late summer/fall subyearlings) grew faster than salmon from other habitats and time periods. These findings present a unique example of the complexity of understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries.  相似文献   
83.
During the transition of juveniles from fresh water to estuarine and coastal environments, the survival of Pacific salmon (Oncorhynchus spp.) can be strongly size selective and cohort abundance is partly determined at this stage. Because quantity and quality of food influence juvenile salmon growth, high rates of prey and energy acquisition during estuarine residence are important for survival. Human activities may have affected the foraging performance of juvenile salmon in estuaries by reducing the area of wetlands and by altering the abundance of salmon. To improve our understanding of the effects of wetland loss and salmon density on juvenile salmon foraging performance and diet composition in estuaries, we assembled Chinook salmon (Oncorhynchus tshawytscha) diet and density data from nine US Pacific Northwest estuaries across a gradient of wetland loss. We evaluated the influence of wetland loss and density on juvenile Chinook salmon instantaneous ration and energy ration, two measures of foraging performance, and whether the effect of density varied among estuaries with different levels of wetland loss. We also assessed the influence of wetland loss and other explanatory variables on salmon diet composition. There was no evidence of a direct effect of wetland loss on juvenile salmon foraging performance, but wetland loss appeared to mediate the effect of density on salmon foraging performance and alter salmon diet composition. Specifically, density had no effect on foraging performance in the estuaries with less than 50 % wetland loss but had a negative effect on foraging performance in the estuaries with greater than 50 % wetland loss. These results suggest that habitat loss may interact with density to constrain the foraging performance of juvenile Chinook salmon, and ultimately their growth, during a life history stage when survival can be positively correlated with growth and size.  相似文献   
84.
The purpose of this study was to detect shallow landslides using hillshade maps derived from light detection and ranging (LiDAR)-based digital elevation model (DEM) derivatives. The landslide susceptibility mapping used an artificial neural network (ANN) approach and backpropagation method that was tested in the northern portion of the Cuyahoga Valley National Park (CVNP) located in northeast Ohio. The relationship between landslides and predictor attributes, which describe landform classes using slope, profile and plan curvatures, upslope drainage area, annual solar radiation, and wetness index, was extracted from LiDAR-based DEM using geographic information system (GIS). The approach presented in this paper required a training study area for the development of the susceptibility model and a validation study area to test the model. The results from the validation showed that within the very high susceptibility class, a total of 42.6 % of known landslides that were associated with 1.56 % of total area were correctly predicted. In contrast, the very low susceptibility class that represented 82.68 % of the total area was associated with 1.20 % of known landslides. The results suggest that the majority of the known landslides occur within a small portion of the study area, consistent with field investigation and other studies. Sample probabilistic maps of landslide susceptibility potential and other products from this approach are summarized and presented for visualization to help park officials in effective management and planning.  相似文献   
85.
Stress mobilisation and deformation of a slope are important for engineers to carry out reliable design of retaining systems. However, most case histories reported mainly on the response of pore water pressure (PWP), whereas knowledge about the stress deformation characteristics of slope is limited. In this study, a saprolitic soil slope was instrumented to monitor not only the responses of PWP but also horizontal stress and horizontal displacement. To assist in the interpretation of field data, a series of laboratory tests was conducted to characterise volume change behaviour of the soil taken from the site, under the effects of both net stress and suction. During a rainstorm event when positive PWP built up, a remarkably large displacement of 20 mm was recorded between 5.5- and 6-m depths, and the top 5 m of the slope exhibited translational downslope movement. This caused an increase in Bishop’s effective horizontal stress by 350 %, which reached a peak value close to 40 % of a Bishop’s effective passive stress. During the subsequent dry season when suction was recovered, an upslope rebound of 10 mm was recorded. Comparison of field and laboratory data reveals that the rebound was attributed to suction-induced soil shrinkage. This rebound led to a decrease in the Bishop’s effective horizontal stress previously built up during the storm event.  相似文献   
86.
The coastal ocean model FVCOM is applied to quantify the changes in circulation, flushing, and exposure time in Great South Bay, New York, after Superstorm Sandy breached the barrier island in 2012. Since then, the lagoon system is connected to the Atlantic via five instead of four inlets. The model simulations are run on two high-resolution unstructured grids, one for the pre-breach configuration, one including the new inlet, with tidal-only forcing, and summer and winter forcing conditions. Despite its small cross-sectional size, the breach has a relatively large net inflow that leads to a strengthening of the along-bay through-flow in Great South Bay (GSB); the tidally driven volume transport in central GSB quadrupled. The seasonal forcing scenarios show that the southwesterly sea breeze in summer slows down the tidally driven flow, while the forcing conditions in winter are highly variable, and the circulation is dependent on wind direction and offshore sea level. Changes in flushing and exposure time associated with the modified transport patterns are evaluated using a Eulerian passive tracer technique. Results show that the new inlet produced a significant decrease in flushing time (approximately 35% reduction under summer wind conditions and 20% reduction under winter wind conditions). Maps of exposure time reflect the local changes in circulation and flushing.  相似文献   
87.
Estuaries are productive and ecologically important ecosystems, incorporating environmental drivers from watersheds, rivers, and the coastal ocean. Climate change has potential to modify the physical properties of estuaries, with impacts on resident organisms. However, projections from general circulation models (GCMs) are generally too coarse to resolve important estuarine processes. Here, we statistically downscaled near-surface air temperature and precipitation projections to the scale of the Chesapeake Bay watershed and estuary. These variables were linked to Susquehanna River streamflow using a water balance model and finally to spatially resolved Chesapeake Bay surface temperature and salinity using statistical model trees. The low computational cost of this approach allowed rapid assessment of projected changes from four GCMs spanning a range of potential futures under a high CO2 emission scenario, for four different downscaling methods. Choice of GCM contributed strongly to the spread in projections, but choice of downscaling method was also influential in the warmest models. Models projected a ~2–5.5 °C increase in surface water temperatures in the Chesapeake Bay by the end of the century. Projections of salinity were more uncertain and spatially complex. Models showing increases in winter-spring streamflow generated freshening in the Upper Bay and tributaries, while models with decreased streamflow produced salinity increases. Changes to the Chesapeake Bay environment have implications for fish and invertebrate habitats, as well as migration, spawning phenology, recruitment, and occurrence of pathogens. Our results underline a potentially expanded role of statistical downscaling to complement dynamical approaches in assessing climate change impacts in dynamically challenging estuaries.  相似文献   
88.
Aplite dikes intruding the Proterozoic 1.42(±?3) Ga Longs Peak-St. Vrain Silver Plume-type peraluminous granite near Jamestown, Colorado, contain F, P, and rare earth element (REE)-rich globular segregations, with 40–46% REE, 3.7–4.8 wt% P2O5, and 5–8 wt% F. A combination of textural features and geochemical data suggest that the aplite and REE-rich globular segregations co-existed as two co-genetic liquids prior to their crystallization, and we propose that they are formed by silicate–fluoride?+?phosphate (+?S?+?CO2) melt immiscibility following ascent, cooling, and decompression of what was initially a single homogeneous magma that intruded the granite. The REE distribution coefficients between the silica-rich aplites and REE-rich segregations are in good agreement with experimentally determined distribution coefficients for immiscible silicate–fluoride?+?phosphate melts. Although monazite-(Ce) and uraninite U–Th–Pb microprobe ages for the segregations yield 1.420(±?25) and 1.442(±?8) Ga, respectively, thus suggesting a co-genetic relationship with their host granite, εNd1.42Ga values for the granites and related granitic pegmatites range from ??3.3 to ??4.7 (average ??3.9), and differ from the values for both the aplites and REE-rich segregations, which range from ??1.0 to ??2.2 (average ??1.6). Furthermore, the granites and pegmatites have (La/Yb)N <50 with significant negative Eu anomalies, which contrast with higher (La/Yb)N >100 and absence of an Eu anomaly in both the aplites and segregations. These data are consistent with the aplite dikes and the REE-rich segregations they contain being co-genetic, but derived from a source different from that of the granite. The higher εNd1.42Ga values for the aplites and REE-rich segregations suggest that the magma from which they separated had a more mafic and deeper, dryer and hotter source in the lower crust or upper mantle compared to the quartzo-feldspathic upper crustal source proposed for the Longs Peak-St. Vrain granite.  相似文献   
89.
90.
Map projections are an essential component of coordinate systems used in applications such as surveying, topographic mapping, and engineering, and care needs to be taken to select ones that minimize distortion for each case. This article explores the selection process for near-linear features on the surface of the Earth and derives limits for the extent of a project that can be projected within specified distortion tolerances. It is then demonstrated that a multifaceted set of projections of the Earth may be used to extend this concept to the mapping of features such as highways and railways that are quasi-linear but do not exactly follow a standard geometrical line (a great circle or a small circle) on the surface of the Earth. A continuous, conformal coordinate system may be derived in such situations, extending to indefinite length and applicable over a swath of several kilometers width, but it cannot be extended to cover situations with extensive variations in height. Instead, the Snake Projection is analyzed, and it is shown that this can be used to develop continuous (non-zonal) projected coordinate systems for major engineering projects extending for hundreds of kilometers and having extensive height ranges. Examples are shown of the application to railway projects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号