首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1786篇
  免费   104篇
  国内免费   6篇
测绘学   76篇
大气科学   136篇
地球物理   386篇
地质学   718篇
海洋学   134篇
天文学   288篇
综合类   8篇
自然地理   150篇
  2024年   4篇
  2023年   12篇
  2022年   10篇
  2021年   29篇
  2020年   46篇
  2019年   44篇
  2018年   55篇
  2017年   77篇
  2016年   90篇
  2015年   60篇
  2014年   58篇
  2013年   119篇
  2012年   79篇
  2011年   96篇
  2010年   108篇
  2009年   99篇
  2008年   103篇
  2007年   90篇
  2006年   92篇
  2005年   84篇
  2004年   87篇
  2003年   58篇
  2002年   61篇
  2001年   35篇
  2000年   23篇
  1999年   38篇
  1998年   20篇
  1997年   15篇
  1996年   17篇
  1995年   6篇
  1994年   21篇
  1993年   14篇
  1992年   8篇
  1991年   7篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   10篇
  1982年   7篇
  1981年   8篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
排序方式: 共有1896条查询结果,搜索用时 468 毫秒
911.
Genesis and emplacement of Vredefort Granophyre, the impact melt rock exposed on the Vredefort Dome, the erosional remnant of the central uplift of the Vredefort impact structure, South Africa, have long been debated. This debate was recently reinvigorated by the discovery that besides the previously known felsic variety of >66 wt% SiO2, a second, somewhat more mafic phase of <66 wt% SiO2 occurs along a Granophyre dike on farms Kopjeskraal and Eldorado in the northwest sector of the dome. Two hypotheses have been put forward to explain the genesis and emplacement of this second phase: (1) successive injections of impact melt into extensional fractures opened in the course of central uplift formation/crater modification, with melts of distinct compositions derived from a differentiating impact melt body in the crater, and (2) generation of the more mafic phase as a product of admixture/assimilation of a mafic country rock component, either the so-called epidiorite of possible Ventersdorp Supergroup affiliation or the Dominion Group meta-lava (DGL), to Felsic Granophyre. In the latter model, contamination with mafic country rock would have occurred during downward intrusion and stoping into and below the crater floor. The so-called Mafic Granophyre has previously only ever been sampled on a single site (Farm Kopjeskraal). In this study, samples of Granophyre occurring along the southerly extension of this dike on farm Rensburgdrif, and from a second dike on the Rietkuil property further southwest were investigated by field work, and petrographic, geochemical, and isotopic analysis. The mafic phase indeed occurs in the interior of the dike at Rensburgdrif, and also on Rietkuil. New geochemical and Sr-Nd isotope data support the hypothesis that the Mafic Granophyre composition represents a mixture between Felsic Granophyre and a mafic country rock. A 20% admixture of epidiorite or DGL to Felsic Granophyre provides an excellent match for the chemical composition of the Mafic Granophyre. The Sr-Nd isotope data indicate that this admixture likely involved the epidiorite component rather than DGL. Together with earlier Sr-Nd-Os-Se isotopic data, and other geochemical data, these results further support formation of the Mafic Granophyre by local assimilation/admixture of epidiorite to Felsic Granophyre.  相似文献   
912.
The bed of estuaries is often characterized by ripples and dunes of varying size. Whereas smaller bedforms adapt their morphological shape to the oscillating tidal currents, large compound dunes (here: asymmetric tidal dunes) remain stable for periods longer than a tidal cycle. Bedforms constitute a form roughness, that is, hydraulic flow resistance, which has a large-scale effect on tidal asymmetry and, hence, on hydrodynamics, sediment transport, and morphodynamics of estuaries and coastal seas. Flow separation behind the dune crest and recirculation on the steep downstream side result in turbulence and energy loss. Since the energy dissipation can be related to the dune lee slope angle, asymmetric dune shapes induce variable flow resistance during ebb and flood phases. Here, a noncalibrated numerical model has been applied to analyze the large-scale effect of symmetric and asymmetric dune shapes on estuarine tidal asymmetry evaluated by residual bed load sediment transport at the Weser estuary, Germany. Scenario simulations were performed with parameterized bed roughness of symmetric and asymmetric dune shapes and without dune roughness. The spatiotemporal interaction of distinct dune shapes with the main drivers of estuarine sediment and morphodynamics, that is, river discharge and tidal energy, is shown to be complex but substantial. The contrasting effects of flood- and ebb-oriented asymmetric dunes on residual bed load transport rates and directions are estimated to be of a similar importance as the controls of seasonal changes of discharge on these net sediment fluxes at the Lower Weser estuary. This corroborates the need to consider dune-induced directional bed roughness in numerical models of estuarine and tidal environments.  相似文献   
913.
Isotopes are increasingly used in rainfall-runoff models to constrain conceptualisations of internal catchment functioning and reduce model uncertainty. However, there is little guidance on how much tracer data is required to adequately do this, and different studies use data from different sampling strategies. Here, we used a 7-year time series of daily stable water isotope samples of precipitation and streamflow to derive a range of typical stream sampling regimes and investigate how this impacts calibration of a semi-distributed tracer-aided model in terms of flow, deuterium and flux age simulations. Over the 7 years weekly sampling facilitated an almost identical model performance as daily, and there were only slight deteriorations in performance for fortnightly sampling. Monthly sampling resulted in poorer deuterium simulations and greater uncertainty in the derived parameter sets ability to accurately represent catchment functioning, evidenced by unrealistic reductions in the volumes of water available for mixing in the saturation area causing simulated water age decreases. Reducing sampling effort and restricting data collection to 3 years caused reductions in the accuracy of deuterium simulation, though the deterioration did not occur if sampling continued for 5 years. Analysis was also undertaken to consider the effects of reduced sampling effort over the driest and wettest hydrological years to evaluate effects of more extreme conditions. This showed that the model was particularly sensitive to changes in sampling during dry conditions, when the catchment hydrological response is most non-linear. Across all dataset durations, sampling in relation to flow conditions, rather than time, revealed that samples collected at flows >Q50 could provide calibration results comparable to daily sampling. Targeting only extreme high flows resulted in poor deuterium and low flow simulations. This study suggests sufficient characterization of catchment functioning can be obtained through reduced sampling effort over longer timescales and the targeting of flows >Q50.  相似文献   
914.
Complex networks of both natural and engineered flow paths control the hydrology of streams in major cities through spatio-temporal variations in connection and disconnection of diverse water sources. We used spatially extensive and temporally intensive sampling of water stable isotopes to disentangle the hydrological sources of the heavily urbanized Panke catchment (~220 km2) in the north of Berlin, Germany. The isotopic data enabled us to partition stream water sources across the catchment using a Bayesian mixing analysis. The upper part of the catchment streamflow is dominated by groundwater (~75%) from gravel aquifers. In dry summer periods, streamflow becomes intermittent in the upper catchment, possibly as a result of local groundwater abstractions. Storm drainage dominates the responses to precipitation events. Although such events can dramatically change the isotopic composition of the upper stream network, storm drainage only accounts for 10%–15% of annual streamflow. Moving downstream, subtle changes in sources and isotope signatures occur as catchment characteristics vary and the stream is affected by different tributaries. However, effluents from a wastewater treatment plant (WWTP), serving 700,000 people, dominate stream flow in the lower catchment (~90% of annual runoff) where urbanization effects are more dramatic. The associated increase in sealed surfaces downstream also reduces the relative contribution of groundwater to streamflow. The volume and isotopic composition of storm runoff is again dominated by urban drainage, though in the lower catchment, still only about 10% of annual runoff comes from storm drains. The study shows the potential of stable water isotopes as inexpensive tracers in urban catchments that can provide a more integrated understanding of the complex hydrology of major cities. This offers an important evidence base for guiding the plans to develop and re-develop urban catchments to protect, restore, and enhance their ecological and amenity value.  相似文献   
915.
Urban structure types (UST) are an initial interest and basic instrument for monitoring, controlling and modeling tasks of urban planners and decision makers during ongoing urbanization processes. This study focuses on a method to classify UST from land cover (LC) objects, which were derived from high resolution satellite images. The topology of urban LC objects is analyzed by implementing neighborhood LC-graphs. Various graph measures are examined by their potential to distinguish between different UST, using the machine learning classifier random forest. Additionally the influence of different parameter settings of the random forest model, the reduction of training samples, and the graph measure importance is analyzed. An independent test set is classified and validated, achieving an overall accuracy of 87%. It was found that the height of the building with the highest node degree has a strong impact on the classification result.  相似文献   
916.
First GOCE gravity field models derived by three different approaches   总被引:28,自引:10,他引:18  
Three gravity field models, parameterized in terms of spherical harmonic coefficients, have been computed from 71 days of GOCE (Gravity field and steady-state Ocean Circulation Explorer) orbit and gradiometer data by applying independent gravity field processing methods. These gravity models are one major output of the European Space Agency (ESA) project GOCE High-level Processing Facility (HPF). The processing philosophies and architectures of these three complementary methods are presented and discussed, emphasizing the specific features of the three approaches. The resulting GOCE gravity field models, representing the first models containing the novel measurement type of gravity gradiometry ever computed, are analysed and assessed in detail. Together with the coefficient estimates, full variance-covariance matrices provide error information about the coefficient solutions. A comparison with state-of-the-art GRACE and combined gravity field models reveals the additional contribution of GOCE based on only 71 days of data. Compared with combined gravity field models, large deviations appear in regions where the terrestrial gravity data are known to be of low accuracy. The GOCE performance, assessed against the GRACE-only model ITG-Grace2010s, becomes superior at degree 150, and beyond. GOCE provides significant additional information of the global Earth gravity field, with an accuracy of the 2-month GOCE gravity field models of 10?cm in terms of geoid heights, and 3?mGal in terms of gravity anomalies, globally at a resolution of 100?km (degree/order 200).  相似文献   
917.
In most regions of the world overgrazing plays a major role in land degradation and thus creates a major threat to natural ecosystems. Several feedbacks exist between overgrazing, vegetation, soil infiltration by water and soil erosion that need to be better understood. In this study of a sub‐humid overgrazed rangeland in South Africa, the main objective was to evaluate the impact of grass cover on soil infiltration by water and soil detachment. Artificial rains of 30 and 60 mm h?1 were applied for 30 min on 1 m2 micro‐plots showing similar sandy‐loam Acrisols with different proportions of soil surface coverage by grass (Class A: 75–100%; B: 75–50%; C: 50–25%; D: 25–5%; E: 5–0% with an outcropping A horizon; F: 0% with an outcropping B horizon) to evaluate pre‐runoff rainfall (Pr), steady state water infiltration (I), sediment concentration (SC) and soil losses (SL). Whatever the class of vegetal cover and the rainfall intensity, with the exception of two plots probably affected by biological activity, I decreased regularly to a steady rate <2 mm h?1 after 15 min rain. There was no significant correlation between I and Pr with vegetal cover. The average SC computed from the two rains increased from 0·16 g L?1 (class A) to 48·5 g L?1 (class F) while SL was varied between 4 g m?2 h?1 for A and 1883 g m?2 h?1 for F. SL increased significantly with decreasing vegetal cover with an exponential increase while the removal of the A horizon increased SC and SL by a factor of 4. The results support the belief that soil vegetation cover and overgrazing plays a major role in soil infiltration by water but also suggest that the interrill erosion process is self‐increasing. Abandoned cultivated lands and animal preferred pathways are more vulnerable to erosive processes than simply overgrazed rangelands. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
918.
This paper presents 19 months of stable isotope (δ2H and δ18O) data to enhance understanding of water and solute transport at two spatial scales (2.3 km2 and 122 km2) in the agricultural Lunan catchment, Scotland. Daily precipitation and stream isotope data, weekly lake and spring isotope data and monthly groundwater isotope data revealed important insights into flow pathways and mixing of water at both scales. In particular, a deeper groundwater flow path significantly contributes to total streamflow (25-50%). Upstream lake isotope dynamics, susceptible to evaporative fractionation, also appeared to have an important influence on the downstream isotope composition. This unique tracer data set facilitated the conceptualization of a lumped catchment-scale flow-tracer model. The incorporation of hydrological, mixing and fractionation processes based on these data improved simulations of the stream δ2H isotope response at the catchment outlet from 0.37 to 0.56 for the Nash-Sutcliffe statistic. The stable isotope data successfully aided model conceptualization and calibration in the quest for a simple water and solute transport model with improved representation of process dynamics.  相似文献   
919.
The vertical variability in mineralogical, chemical and isotopic compositions observed in large river suspended sediments calls for a depth-integration of this variability to accurately determine riverine geochemical fluxes. In this paper, we present a method to determine depth-integrated chemical particulate fluxes of large rivers, based on river sampling along depth-profiles, and applied to the Amazon Basin lowland tributaries. The suspended particulate matter (SPM) concentration data from depth-profiles is modeled for a number of individual grain size fractions using the Rouse model, which allows to predict the grain size distribution of suspended sediment throughout the whole river cross-section. Then, using (1) the relationship between grain size distribution and the Al/Si ratio (2) relationships between the Al/Si ratio and the chemical concentrations, the chemical composition of river sediment is predicted throughout the river cross-section, and integrated to yield the depth-integrated chemical particulate flux for a number of chemical elements (e.g. Si, Al, Fe, Na, REEs, …). For elements such as Al, Fe, REEs, Th, the depth-integrated flux is around twice as high as the one calculated from river surface sample characteristics. For Na and Si, the depth-integrated flux is three times higher than the “surface” estimate, due to the enrichment of albite and quartz at the bottom of the river. Depth-integrated 87Sr/86Sr composition of suspended sediment, also predictable using this method, differs by more than 10−3 from the surface sample composition.Finally, potential implications of depth-integrated estimates of Amazon sediment chemistry are explored. Depth-integration of particulate 87Sr/86Sr isotopic ratios is necessary for a reliable use of Sr isotopes as a provenance tracer. The concept of steady-state weathering of a large river basin is revisited using depth-integrated sediment composition. This analysis shows that, in the Amazon Basin river, the previously observed discrepancy between (1) weathering intensities of channel surface sediment and (2) silicate-derived dissolved fluxes is only slightly accounted for by the vertical variability of suspended sediment weathering intensities. This observation confirms that most large rivers basins are not eroding at steady-state.  相似文献   
920.
Diamond drill core traverses across the Platreef were carried out at Tweefontein, Sandsloot, and Overysel in order to establish the relationship between crustal contamination and platinum group element (PGE) mineralization. The footwall rocks are significantly different at each of these sites and consist of banded iron formation and sulfidic shales at Tweefontein, of carbonates at Sandsloot, and of granites and granite gneisses at Overysel. As demonstrated in this study, Platreef rocks are characterized by two stages of crustal contamination. The first contamination event occurred prior to emplacement of the magma and is present in Platreef rocks at all three sites, as well as in the Merensky Reef. This event is readily identified on trace element spidergrams and trace element ratio scattergrams. The second contamination event was induced by interaction of the Platreef magma with the local footwall rocks. It is most easily identified at Tweefontein, where there is a large increase in the FeO content of the Platreef rocks, and at Sandsloot, where there is a large increase in their CaO and MgO contents, relative to Bushveld rocks that are uncontaminated by the local footwall rocks. At Overysel, the second contamination event did not result in pronounced changes in the major element composition of the Platreef rocks, but can be detected in their trace element chemistry. A strong inverse relationship between PGE tenors and S/Se ratios is interpreted to suggest that the PGE-rich sulfides were formed prior to emplacement of the Platreef magmas through assimilation of crustal S and became progressively enriched in the PGE during transport. Rather than promoting S-saturation, interaction of the Platreef magma with the footwall rocks diluted the metal tenors of the sulfides. Although both the Platreef and the Merensky Reef magmas were contaminated by the same crustal contaminant and were probably PGE-rich, they have radically different Pd/Pt ratios. Their Pd/Pt ratios suggest that whereas the Merensky Reef magma became PGE-rich due to dissolution of PGE-rich sulfides segregated from a pre-Merensky magma that had undergone relatively little fractionation prior to reaching S-saturation, the pre-Platreef magma had undergone greater fractionation prior to the sulfide saturation event, thereby increasing its Pd/Pt ratio. We suggest that the magmas that formed the Platreef and Merensky Reef may have simply been carrier magmas for sulfides that had formed elsewhere in the plumbing system of the Bushveld Complex by the interaction of earlier generations of magmas with the crustal rocks that underlie the Complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号