首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1981篇
  免费   132篇
  国内免费   34篇
测绘学   94篇
大气科学   145篇
地球物理   419篇
地质学   796篇
海洋学   193篇
天文学   299篇
综合类   41篇
自然地理   160篇
  2024年   5篇
  2023年   13篇
  2022年   17篇
  2021年   41篇
  2020年   55篇
  2019年   53篇
  2018年   65篇
  2017年   84篇
  2016年   97篇
  2015年   69篇
  2014年   74篇
  2013年   132篇
  2012年   94篇
  2011年   106篇
  2010年   121篇
  2009年   113篇
  2008年   110篇
  2007年   95篇
  2006年   101篇
  2005年   96篇
  2004年   97篇
  2003年   65篇
  2002年   70篇
  2001年   44篇
  2000年   31篇
  1999年   39篇
  1998年   21篇
  1997年   20篇
  1996年   21篇
  1995年   7篇
  1994年   22篇
  1993年   16篇
  1992年   13篇
  1991年   7篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   9篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   11篇
  1982年   7篇
  1981年   8篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
排序方式: 共有2147条查询结果,搜索用时 46 毫秒
991.
A prominent weakening in equatorial Atlantic sea surface temperature (SST) variability, occurring around the year 2000, is investigated by means of observations, reanalysis products and the linear recharge oscillator (ReOsc) model. Compared to the time period 1982–1999, during 2000–2017 the May–June–July SST variability in the eastern equatorial Atlantic has decreased by more than 30%. Coupled air–sea feedbacks, namely the positive Bjerknes feedback and the negative net heat flux damping are important drivers for the equatorial Atlantic interannual SST variability. We find that the Bjerknes feedback weakened after 2000 while the net heat flux damping increased. The weakening of the Bjerknes feedback does not appear to be fully explainable by changes in the mean state of the tropical Atlantic. The increased net heat flux damping is related to an enhanced response of the latent heat flux to the SST anomalies (SSTa). Strengthened trade winds as well as warmer SSTs are suggested to increase the air–sea specific humidity difference and hence, enhancing the latent heat flux response to SSTa. A combined effect of those two processes is proposed to be responsible for the weakened SST variability in the eastern equatorial Atlantic. The ReOsc model supports the link between reduced SST variability, weaker Bjerknes feedback and stronger net heat flux damping.  相似文献   
992.
This study aims to evaluate soil climate quantitatively under present and projected climatic conditions across Central Europe (12.1°–18.9° E and 46.8°–51.1° N) and the U.S. Central Plains (90°–104° W and 37°–49° N), with a special focus on soil temperature, hydric regime, drought risk and potential productivity (assessed as a period suitable for crop growth). The analysis was completed for the baselines (1961–1990 for Europe and 1985–2005 for the U.S.) and time horizons of 2025, 2050 and 2100 based on the outputs of three global circulation models using two levels of climate sensitivity. The results indicate that the soil climate (soil temperature and hydric soil regimes) will change dramatically in both regions, with significant consequences for soil genesis. However, the predicted changes of the pathways are very uncertain because of the range of future climate systems predicted by climate models. Nevertheless, our findings suggest that the risk of unfavourable dry years will increase, resulting in greater risk of soil erosion and lower productivity. The projected increase in the variability of dry and wet events combined with the uncertainty (particularly in the U.S.) poses a challenge for selecting the most appropriate adaptation strategies and for setting adequate policies. The results also suggest that the soil resources are likely be under increased pressure from changes in climate.  相似文献   
993.
El'gygytgyn (Chukotka, Arctic Russia) is a well‐preserved impact structure, mostly excavated in siliceous volcanic rocks. For this reason, the El'gygytgyn structure has been investigated in recent years and drilled in 2009 in the framework of an ICDP (International Continental Scientific Drilling Program) project. The target rocks mostly consist of rhyodacitic ignimbrites and tuffs, which make it difficult to distinguish impact melt clasts from fragments of unshocked target rock within the impact breccia. Several chemical and petrologic attempts, other than dating individual clasts, have been considered to distinguish impact melt from unshocked volcanic rock of the targets, but none has proven reliable. Here, we propose to use cathodoluminescence (imaging and spectrometry), whose intensity is inversely correlated with the degree of shock metamorphism experienced by the investigated lithology, to aid in such a distinction. Specifically, impact melt rocks display low cathodoluminescence intensity, whereas unshocked volcanic rocks from the area typically show high luminescence. This high luminescence decreases with the degree of shock experienced by the individual clasts in the impact breccia, down to almost undetectable when the groundmass is completely molten. This might apply only to El'gygytgyn, because the luminescence in volcanic rocks might be due to devitrification and recrystallization processes of the relatively old (Cretaceous) target rock with respect to the young impactites (3.58 Ma). The alteration that affects most samples from the drill core does not have a significant effect on the cathodoluminescence response. In conclusion, cathodoluminescence imaging and spectra, supported by Raman spectroscopy, potentially provide a useful tool for in situ characterization of siliceous impactites formed in volcanic target.  相似文献   
994.
995.
The complex impact structure El'gygytgyn (age 3.6 Ma, diameter 18 km) in northeastern Russia was formed in ~88 Ma old volcanic target rocks of the Ochotsk‐Chukotsky Volcanic Belt (OCVB). In 2009, El'gygytgyn was the target of a drilling project of the International Continental Scientific Drilling Program (ICDP), and in summer 2011 it was investigated further by a Russian–German expedition. Drill core material and surface samples, including volcanic target rocks and impactites, have been investigated by various geochemical techniques in order to improve the record of trace element characteristics for these lithologies and to attempt to detect and constrain a possible meteoritic component. The bedrock units of the ICDP drill core reflect the felsic volcanics that are predominant in the crater vicinity. The overlying suevites comprise a mixture of all currently known target lithologies, dominated by felsic rocks but lacking a discernable meteoritic component based on platinum group element abundances. The reworked suevite, directly overlain by lake sediments, is not only comparatively enriched in shocked minerals and impact glass spherules, but also contains the highest concentrations of Os, Ir, Ru, and Rh compared to other El'gygytgyn impactites. This is—to a lesser extent—the result of admixture of a mafic component, but more likely the signature of a chondritic meteoritic component. However, the highly siderophile element contribution from target material akin to the mafic blocks of the ICDP drill core to the impactites remains poorly constrained.  相似文献   
996.
Remarkable bedding features occur in Middle Cambrian platy limestone of the Western Hills close to Beijing in NE-China, which are intercalated in a sequence of shallow water carbonates (mudstones, storm deposits, oolitic grainstones). The platy limestone beds (up to 5 cm thickness) have undergone complex diagenetic compaction and pressure solution. Varying facies types are characterized by wavy, stylolitic boundaries with different thickness of clay accumulation and common lateral pinch out. Cross-cutting relationships of stylolites commonly destroy primary bed-surfaces. This indicates an intimate interfingering resulting in an indenting fabric of primary separated facies types. Nevertheless, primary sedimentary boundaries can be recognized. There occur varying types of compaction features documented by different stylolite types with varying amplitudes and thickness of clay-enrichments (parallel clay seams, stylolamination, stylo-nodular and stylo-brecciated structures with multi-grained seams). Bedded limestone of the type documented, generally belong to the limestone family of Plattenkalk, Lithographic Limestone or platy limestone, which can form in different environments. Consequently, using these names without detailed data on some specific parameters (e.g. thickness, surface morphology, composition of allochems, particle and crystal size) results in more confusion and hinders the comparison of Plattenkalk, Lithographic Limestone and platy limestone from different locations throughout the earth history. Therefore, a classification is proposed here which is based on macroscopic, microscopic, and sub-microscopic parameters. Plattenkalk and platy limestone are considered to form the two main groups. Plattenkalk beds are laterally consistent and have parallel, horizontal surfaces. Platy limestone can pinch out laterally and reveals irregular and inclined bed surfaces. Single beds in both can have different thickness, internal structure (e.g. micritic, microsparitic) and fabric (e.g. homogeneous, nodular), particle content and other variations (e.g. chemical, mineralogical). These parameters should be added to the basic name and used in a system similar to Folk’s limestone classification. Lithographic Limestone is defined as a subgroup of Plattenkalk with well-defined parameters. A consequent use of this classification will also help to understand fossil preservation and/or non-preservation in different types of Plattenkalk, Lithographic Limestone, and platy limestone.  相似文献   
997.
Understanding and interpretation of ‘numbers’ produced about the depositional age of an erratic boulder by cosmogenic nuclide surface-exposure dating is important in the construction of glacial chronology. We have sampled three ‘Findlinge’ (glacially transported boulders) located on the right-lateral margin of the Aare glacier at Möschberg, Grosshöchstetten, southeast of Bern, with the aim of shedding light on this topic. The boulders have the same depositional, but different post-depositional histories: simple exposure; exhumation; and human impact. This sampling is specially selected for this study, since the boulders showing exhumation and human impact would not have been sampled in a regular surface-exposure dating application. We measured cosmogenic 10Be concentrations and calculated apparent exposure ages that are 13.6 ± 0.5, 18.1 ± 0.8, and 7.5 ± 0.4 ka, respectively. The exposure age of the first boulder reflects exhumation. The apparent exposure age of 18.1 ± 0.8 ka (erosion-corrected exposure age 19.0 ± 0.9 ka) from the second boulder correlates well with the end of the Alpine and global last glacial maximum. The third boulder shows evidence of quarrying as it is surrounded by a rim of excavation material, which is also reflected by the 7.5 ± 0.4 ka apparent exposure age. We modeled the variation of 10Be concentrations with depth down into the sediment in which the first (exhumed) boulder was once buried in, and down into the third (quarried) boulder. According to our modeling, we determined that the exhumed ‘Findling’ was buried in sediment at a depth of around 0.5 m, and around 2 m of rock was quarried from the third ‘Findling’. Our results reveal the importance of sampling for surface-exposure dating within a well defined field context, as post-depositional impacts can easily hinder exposure-dating of surfaces.  相似文献   
998.
The settlement and development of Québec’s maritime coastline has generally taken place without consideration for coastal dynamics and coastal hazards. Consequently, fighting coastal erosion has become a necessity. Until now, the construction of rigid walls and encroachments has been the preferred approach to the problem. In the Chaleur Bay region, coastal communities are particularly vulnerable to erosion and flooding because a number of residential, commercial and transportation infrastructures have been installed on beach terraces and sand spits. Recent storms, such as the storm of December 2, 2005, have made possible a better understanding of how these rigid defence structures amplify the effects of storm surges and waves. These structures drive the sand away from the coast, lowering beach levels and even causing beaches to vanish entirely from the areas situated in front of the defence structures. The end result is a weakening of the natural capacity of these coastal systems to absorb the energy of waves and a greater risk of coastal flooding. An integrated approach using local knowledge on the one hand, along with LIDAR surveys and a DGPS system on the other hand, have made possible to map the levels reached by flooding at the time of the storm. The results indicate that such levels vary greatly in spatial terms and that the difference between the levels actually reached and the water level measured by tide gauge can be as much as 2 m; a difference that is due to anthropogenic perturbations. This raises questions concerning the safety and the reference levels used for mapping coastal flooding risk. Taking into account knowledge of local communities, analysis of water levels, geomorphological indicators and aggravating anthropogenic factors, an approach and basic criteria are put forward with a view of establishing a reference level for the mapping of flood risk that can be used by community land-use planners.  相似文献   
999.
This paper presents two novel nonlinear models of u-shaped anti-roll tanks for ships, and their linearizations. In addition, a third simplified nonlinear model is presented. The models are derived using Lagrangian mechanics. This formulation not only simplifies the modeling process, but also allows one to obtain models that satisfy energy-related physical properties. The proposed nonlinear models and their linearizations are validated using model-scale experimental data. Unlike other models in the literature, the nonlinear models in this paper are valid for large roll amplitudes. Even at moderate roll angles, the nonlinear models have three orders of magnitude lower mean square error relative to experimental data than the linear models.  相似文献   
1000.
This paper focuses on Messinian Salinity Crisis (MSC) evaporites in the Cyprus Arc (eastern Mediterranean) using high‐resolution reflection seismic and multi‐beam data. The results shed new light on the Miocene to Present tectonic evolution of this area and contribute to our general knowledge of the MSC in a deep basin setting. The evaporites and overlying formations show a complex deformation pattern due to a combination of thick‐skinned plate‐tectonic convergence and thin‐skinned disharmonic deformation related to the mobile evaporite‐bearing unit. Several MSC markers are identified and precisely mapped: the base of the MSC unit is a ‘decollement’ level, whereas the top is clearly identified as a toplap surface. Intra‐MSC markers and two MSC subunits are identified and mapped over the entire study area. The geometry of MSC markers shows that the lower MSC subunit was deposited in a relatively quiet tectonic setting. The nature of the anisopachous upper unit indicates a syn‐depositional phase of large‐scale plate‐tectonic activity. A thin‐skinned phase of compressional deformation during the Late Miocene affected the entire MSC unit, overlain by undeformed Pliocene–Quaternary layers. A second thin‐skinned phase, well expressed in the bathymetry, occurred from the Pliocene to Recent, resulting in extensional gravity‐gliding within the evaporites and the Pliocene–Quaternary sequence. We show that the MSC had a dramatic impact on the regional structure. For instance, the erosive nature of the top of the MSC unit is linked to the desiccation episode rather than to the cessation of tectonic activity. This particularly strong and short‐lived erosion may have been enhanced by the regional effects of the MSC, owing to differential uplift/subsidence caused by the drawdown. The evaporites are essential markers for constraining the tectonic framework, provided that active deformation can be distinguished from passive gliding associated with extensional/contractional deformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号