首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2146篇
  免费   124篇
  国内免费   31篇
测绘学   95篇
大气科学   166篇
地球物理   449篇
地质学   760篇
海洋学   196篇
天文学   376篇
综合类   6篇
自然地理   253篇
  2023年   12篇
  2022年   11篇
  2021年   42篇
  2020年   53篇
  2019年   68篇
  2018年   75篇
  2017年   78篇
  2016年   101篇
  2015年   81篇
  2014年   82篇
  2013年   157篇
  2012年   88篇
  2011年   119篇
  2010年   101篇
  2009年   126篇
  2008年   107篇
  2007年   101篇
  2006年   99篇
  2005年   77篇
  2004年   73篇
  2003年   63篇
  2002年   50篇
  2001年   44篇
  2000年   44篇
  1999年   36篇
  1998年   38篇
  1997年   18篇
  1996年   26篇
  1995年   18篇
  1994年   14篇
  1993年   18篇
  1992年   13篇
  1991年   17篇
  1990年   16篇
  1989年   17篇
  1988年   10篇
  1987年   13篇
  1986年   11篇
  1985年   19篇
  1984年   20篇
  1983年   16篇
  1982年   15篇
  1981年   13篇
  1979年   14篇
  1978年   18篇
  1977年   9篇
  1976年   7篇
  1975年   8篇
  1974年   6篇
  1973年   6篇
排序方式: 共有2301条查询结果,搜索用时 31 毫秒
181.
During the period of the IQSY, January 1964 through December 1965, the sun remained quiet, accelerating few energetic particles. There were many instances during the IQSY when lowenergy detectors on satellites and space probes registered small intensity increases. However, few of these events were associated with protons of energies exceeding 10 MeV. Moreover, the maximum intensities (E p > 500 keV) were typically 1–8/cm2sec ster. Most of these events were below the threshold of riometer detection.The largest solar cosmic ray event observed in 1964 by polar-based riometers was that of March 16. This event was observed by 30 and 50 Mc/s riometers at McMurdo Sound, Antarctica, and Shepherd Bay, N.W.T., Canada.The largest event in 1965 occurred on February 5 and was the largest during the IQSY. It was associated with a class 2 flare at about 1750 UT, February 5. The propagation time between the sun and Earth was about one hour. This event was well observed by satellites, space probes, and riometers.This paper discusses primarily the 5 February 1965 event. Some discussion is also given to the 16 March 1964 event, other small events during the IQSY, and the recent event in March 1966.  相似文献   
182.
Individual aerosol particles collected in the Negev desert in Israel during a summer and winter campaign in 1996–1997 were analysed by scanning electron microscopy with energy-dispersive X-ray analysis. Hierarchical cluster analysis was performed to interpret the data on the basis of particle diameter and composition. Eleven particle classes (groups) provided clues on sources and/or particle formation. The summer samples were enriched in sulphates and mineral dusts; the winter samples contained more sea salts, aged sea salts, and industrial particles. The fine size fraction below 1 m diameter was enriched in secondary particles and showed evidence of atmospheric processing. The secondary sulphate particles were mainly attributed to long-range transport. A regional conversion from calcite to calcium sulphate occurred during summer. Industrial particles originating from local pollution appeared during winter.  相似文献   
183.
184.
185.
Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dense, yet relatively small area, made the combination of imagery and mapped data strategically useful. This paper reviews the role played by aerial photography, satellite imagery, and LIDAR data at Ground Zero. It examines how emergency managers utilized these datasets, and identifies significant problems that were encountered. It goes on to explore additional ways in which imagery could have been used, while presenting recommendations for more effective use in future disasters and Homeland Security applications. To plan adequately for future events, it was important to capture knowledge from individuals who responded to the World Trade Center attack. In recognition, interviews with key emergency management and geographic information system (GIS) personnel provide the basis of this paper. Successful techniques should not be forgotten, or serious problems dismissed. Although widely used after September 11th, it is important to recognize that with better planning, remote sensing and GIS could have played an even greater role. Together with a data acquisition timeline, an expanded discussion of these issues is available in the MCEER/NSF report “Emergency Response in the Wake of the World Trade Center Attack; The Remote Sensing Perspective” (Huyck and Adams, 2002)  相似文献   
186.
Sinkhole collapse in the area of Maryland Interstate 70 (I-70) and nearby roadways south of Frederick, Maryland, has been posing a threat to the safety of the highway operation as well as other structures. The occurrence of sinkholes is associated with intensive land development. However, the geological conditions that have been developing over the past 200 million years in the Frederick Valley control the locations of the sinkholes. Within an area of approximately 8 km2, 138 sinkholes are recorded and their spatial distribution is irregular, but clustered. The clustering indicates the existence of an interaction between the sinkholes. The point pattern of sinkholes is considered to be a sample of a Gibbsian point process from which the hard-core Strauss Model is developed. The radius of influence is calculated for the recorded sinkholes which are most likely to occur within 30 m of an existing sinkhole. The stochastic analysis of the existing sinkholes is biased toward the areas with intensive land use. This bias is adjusted by considering (1) topography, (2) proximity to topographic depressions, (3) interpreted rock formation, (4) soil type, (5) geophysical anomalies, (6) proximity to geologic structures, and (7) thickness of overburden. Based on the properties of each factor, a scoring system is developed and the average relative risk score for individual 30-m segments of the study area is calculated. The areas designated by higher risk levels would have greater risk of a sinkhole collapse than the areas designated by lower risk levels. This risk assessment approach can be updated as more information becomes available.  相似文献   
187.
The gradient flux technique, which measures the gas transfer velocity (k), and new observational techniques that probe turbulence in the aqueous surface boundary layers were conducted over a tidal cycle in the Plum Island Sound, Massachusetts. Efforts were aimed at testing new methods in an estuarine system and to determine if turbulence created by tidal velocity can be responsible for the short-term variability ink. Measurements were made during a low wind day, at a site with tidal excursions of 2.7 m and a range in tidal velocity of nearly 1 m s−1. Estimates ofk using the gradient flux technique were made simultaneously with the Controlled Flux Technique (CFT), infrared imagery, and high-resolution turbulence measurements, which measure the surface renewal rate, turbulent scales, and the turbulent dissipation rate, respectively. All measurements were conducted from a small mobile catamaran that minimizes air- and water-side flow distortions. Infrared imagery showed considerable variability in the turbulent scales that affect air-water gas exchange. These measurements were consistent with variation in the surface renewal rate (range 0.02 to 2 s−1), the turbulent dissipation rate (range 10−7 to 10−5 W kg−1), andk (range 2.2 to 12.0 cm hr−1). During this low wind day, all variables were shown to correlate with tidal speed. Taken collectively our results indicate the promise of these methods for determining short-term variability in gas transfer and near surface turbulence in estuaries and demonstrate that turbulent transport associated with tidal velocity is a potentially important factor with respect to gas exchange in coastal systems.  相似文献   
188.
Ground-penetrating radar (GPR) surveys, outcrop measurements, and cores provide a high-resolution 3D geologic model to investigate the hydraulic effects of shales in marine-influenced lower delta-plain distributary channel deposits within the Cretaceous-age Ferron Sandstone at Corbula Gulch in central Utah, USA. Shale statistics are computed from outcrop observations. Although slight anisotropy was observed in mean length and variogram ranges parallel and perpendicular to pale of low , the anisotropy is not statistically significant and the estimated mean length is 5.4 m. Truncated Gaussian simulation was used to create maps of shales that are placed on variably dipping stratigraphic surfaces interpreted from high-resolution 3D GPR surveys, outcrop interpretations, and boreholes. Sandstone permeability is estimated from radar responses calibrated to permeability measurements from core samples. Experimentally designed flow simulations examine the effects of variogram range, shale coverage fraction, and trends in shale coverage on predicted upscaled permeability, breakthrough time, and sweep efficiency. Approximately 1500 flow simulations examine three different geologic models, flow in the 3 coordinate directions, 16 geostatistical parameter combinations, and 10 realizations for each model. ANOVA and response models computed from the flow simulations demonstrate that shales decrease sweep, recovery, and permeability, especially in the vertical direction. The effect on horizontal flow is smaller. Flow predictions for ideal tracer displacements at Corbula Gulch are sensitive to shale-coverage fraction, but are relatively insensitive to twofold variations in variogram range or to vertical trends in shale coverage. Although the hydraulic effects of shale are statistically significant, the changes in flow responses rarely exceed 20%. As a result, it may be reasonable to use simple models when incorporating analogous shales into models of reservoirs or aquifers.  相似文献   
189.
This paper considers the hydrogeological simulation of groundwater movement in karstic regions using a hydrological modelling system (SHETRAN) which has been adapted for modelling flow in karstic aquifers. Flow and transport through karstic aquifers remains poorly understood, yet quantitative hydrogeological models are essential for developing and implementing groundwater protection policies. The new model has been developed and used within the STALAGMITE (Sustainable Management of Groundwater in Karstic Environments) project, funded by the European Commission. The SHETRAN model is physically based insofar as most of the parameters have some physical meaning. The SHETRAN model represents all of the key processes in the hydrological cycle, including subsurface flow in the saturated and unsaturated zones, surface flow over the ground surface and in channels, rainfall interception by vegetation canopies, evapotranspiration, snow-pack development and snowmelt. The modifications made to SHETRAN to simulate karstic aquifers are (1) the coupling of a pipe network model to a variably saturated, three-dimensional groundwater component (the VSS-NET component), to simulate flow under pressure in saturated conduits; (2) the coupling of surface water features (e.g. sinking streams or "ponors", and spring discharges) to the conduit system; (3) the addition of a preferential "bypass" flow mechanism to represent vertical infiltration through a high-conductivity epikarst zone. Lastly, a forward particle tracking routine has been developed to trace the path of hypothetical particles with matrix and pipe flow to springs or other discharge points. This component allows the definition of groundwater protection zones around a source for areas of the catchment (watershed) which are vulnerable to pollution from non-point sources (agriculture and forestry).  相似文献   
190.
We investigate the chemical transition of simple molecules like C2H2 and HCN into aerosol particles in the context of Titan's atmosphere. Experiments that synthesize analogs (tholins) for these aerosols can help illuminate and constrain these polymerization mechanisms. Using information available from these experiments, we suggest chemical pathways that can link simple molecules to macromolecules, which will be the precursors to aerosol particles: polymers of acetylene and cyanoacetylene, polycyclic aromatics, polymers of HCN and other nitriles, and polyynes. Although our goal here is not to build a detailed kinetic model for this transition, we propose parameterizations to estimate the production rates of these macromolecules, their C/N and C/H ratios, and the loss of parent molecules (C2H2, HCN, HC3N and other nitriles, and C6H6) from the gas phase to the haze. We use a one-dimensional photochemical model of Titan's atmosphere to estimate the formation rate of precursor macromolecules. We find a production zone slightly lower than 200 km altitude with a total production rate of 4×10−14 g cm−2 s−1 and a C/N?4. These results are compared with experimental data, and to microphysical model requirements. The Cassini/Huygens mission will bring a detailed picture of the haze distribution and properties, which will be a great challenge for our understanding of these chemical processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号