首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2139篇
  免费   135篇
  国内免费   30篇
测绘学   74篇
大气科学   166篇
地球物理   451篇
地质学   799篇
海洋学   197篇
天文学   362篇
综合类   6篇
自然地理   249篇
  2023年   12篇
  2022年   7篇
  2021年   46篇
  2020年   53篇
  2019年   69篇
  2018年   75篇
  2017年   75篇
  2016年   101篇
  2015年   85篇
  2014年   81篇
  2013年   157篇
  2012年   97篇
  2011年   125篇
  2010年   102篇
  2009年   130篇
  2008年   108篇
  2007年   104篇
  2006年   100篇
  2005年   72篇
  2004年   73篇
  2003年   72篇
  2002年   47篇
  2001年   45篇
  2000年   43篇
  1999年   31篇
  1998年   33篇
  1997年   17篇
  1996年   27篇
  1995年   21篇
  1994年   16篇
  1993年   14篇
  1992年   17篇
  1991年   16篇
  1990年   17篇
  1989年   19篇
  1988年   13篇
  1987年   10篇
  1986年   5篇
  1985年   17篇
  1984年   18篇
  1983年   17篇
  1982年   16篇
  1981年   14篇
  1980年   6篇
  1979年   12篇
  1978年   17篇
  1977年   11篇
  1976年   6篇
  1974年   9篇
  1973年   6篇
排序方式: 共有2304条查询结果,搜索用时 625 毫秒
41.
For more than a decade, inexpensive electronic instruments have made continuous underwater light monitoring an integral part of many seagrass studies. Although biofouling, if not controlled, compromises the utility of the record. A year-long assessment of the time course of sensor fouling, in the Laguna Madre of Texas established that light transmitted through the fouling layer after 2 wk of exposure exceeded 90% except for a 6–8 wk period in May and June. On that basis, a 2-wk interval was chosen for routine servicing. Subsequent monitoring proved this choice to be grossly in error. The period of sub-90% transmittance after 2 wk extended to 4–6 mo annually over the next 3 yr. Fouling was strongly correlated with temperature, ambient light, and year. Since an algal bloom of 7-yr duration finally waned during this study, increased ambient light seemed most likely to explain increased fouling later in the study. The explanatory value of light was less than temperature or year in multiple regression, requiring some other explanation of the date effect than change in ambient light. Allelopathic and suspension-feeding depressant effects of the brown tide are offered as the most likely cause of unusually low fouling in the first year. Biofouling was so unpredictable and rapid in this study that at least weekly maintenance would be required to assure reliability of the light monitoring record.  相似文献   
42.
43.
A number of methods have been developed over the last few decades to model the gravitational gradients using digital elevation data. All methods are based on second-order derivatives of the Newtonian mass integral for the gravitational potential. Foremost are algorithms that divide the topographic masses into prisms or more general polyhedra and sum the corresponding gradient contributions. Other methods are designed for computational speed and make use of the fast Fourier transform (FFT), require a regular rectangular grid of data, and yield gradients on the entire grid, but only at constant altitude. We add to these the ordinary numerical integration (in horizontal coordinates) of the gradient integrals. In total we compare two prism, two FFT and two ordinary numerical integration methods using 1" elevation data in two topographic regimes (rough and moderate terrain). Prism methods depend on the type of finite elements that are generated with the elevation data; in particular, alternative triangulations can yield significant differences in the gradients (up to tens of Eötvös). The FFT methods depend on a series development of the topographic heights, requiring terms up to 14th order in rough terrain; and, one popular method has significant bias errors (e.g. 13 Eötvös in the vertical–vertical gradient) embedded in its practical realization. The straightforward numerical integrations, whether on a rectangular or triangulated grid, yield sub-Eötvös differences in the gradients when compared to the other methods (except near the edges of the integration area) and they are as efficient computationally as the finite element methods.  相似文献   
44.
Two Early Cenozoic rifts in Southeast Asia (beneath the Pattani and Malay basins) experienced only limited upper-crustal extension (β≤1.5); yet very thick post-rift sequences are present, with 6–12 km of Late Cenozoic terrestrial and shallow-marine sediment derived from adjacent sources. Conventional post-rift backstripping requires depth-dependent lithospheric thinning by β=2–4 to explain these tremendous thicknesses. We assess an alternative explanation for this post-rift subsidence, involving lower-crustal flow from beneath these basins in response to lateral pressure-gradients induced by the sediment loads and the negative loads arising from the erosion of their sediment sources. We calculate that increased rates of erosion in western Thailand in the Early Miocene placed the crust in a non-steady thermal state, such that the depth (and thus, the pressure) at the base of the brittle upper crust subsequently varied over time. Following such a perturbation, thermal and mass-flux steady-state conditions took millions of years to re-establish. In the meantime, the lateral pressure-gradient caused net outflow of lower crust, thinning the crust beneath the depocentre by several kilometres (mimicking the isostatic effect of greater crustal extension having occurred beforehand) and thickening it beneath the sediment source region. The local combination of hot crust and high rates of surface processes, causing lower-crustal flow to be particularly vigorous and thus making its effects more readily identifiable, means that the Pattani and Malay basins represent a set of conditions different from basins in many other regions. However, lower-crustal flow induced by surface processes will also occur to some extent, but less recognisably, in many other continental crustal provinces, but its effects may be mistaken for those of other processes, such as larger-magnitude stretching and/or depth-dependent stretching.  相似文献   
45.
It has been assumed that because seagrasses dominate macrophyte biomass in many estuaries they also dominate primary production. We tested this assumption by developing three carbon budgets to examine the contribution of autotrophic components to the total ecosystem net primary production (TENPP) of Lower Laguna Madre, Texas. The first budget coupled average photosynthetic parameters with average daily irradiance to calculate daily production. The second budget used average photosynthetic parameters and hourly in situ irradiance to estimate productivity. The third budget integrated temperature-adjusted photosynthetic parameters (using Q10=2) and hourly in situ irradiance to estimate productivity. For each budget TENPP was calculated by integrating production from each autotroph based on the producers’ areal distribution within the entire Lower Laguna Madre. All budgets indicated that macroalgae account for 33–42% of TENPP and seagrasses consistently accounted for about 33–38%. The contribution by phytoplankton was consistently about 15–20%, and the contribution from the benthic microalgae varied between 8% and 36% of TENPP, although this may have been underestimated due to our exclusion of the within bed microphytobenthos component. The water column over the seagrass beds was net heterotrophic and consequently was a carbon sink consuming between 5% and 22% of TENPP, TENPP ranged between 5.41×1010 and 2.53×1011 g C yr−1, depending on which budget was used. The simplest, most idealized budget predicted the highest TENPP, while the more realistic budgets predicted lower values. Annual production rates estimated using the third budget forHalodule urightii andThalassia testudinum compare well with field data. Macroalgae and microalgae contribute 50–60% of TENPP, and seagrass may be more important as three-dimensional habitat (i.e., structure) than as a source of organic carbon to the water column in Lower Laguna Madre.  相似文献   
46.
The oxygen fugacity of the Dar al Gani 476 martian basalt is determined to be quartz-fayalite-magnetite (QFM) −2.3 ± 0.4 through analysis of olivine, low-Ca pyroxene, and Cr-spinel and is in good agreement with revised results from Fe-Ti oxides that yield QFM −2.5 ± 0.7. This estimate falls within the range of oxygen fugacity for the other martian basalts, QFM −3 to QFM −1. Oxygen fugacity in martian basalts correlates with 87Sr/86Sr, 143Nd/144Nd, and La/Yb ratios, indicating that the mantle source of the basalts is reduced and that assimilation of crust-like material controls the oxygen fugacity. This allows constraints to be placed on the oxidation state of the martian mantle and on the nature of assimilated crustal material. The assimilated material may be the product of early and extensive hydrothermal alteration of the martian crust, or it may be amphibole- or phlogopite-bearing basaltic rock within the crust. In either case, water may play a significant role in the oxidation of basaltic magmas on Mars, although it may be secondary to assimilation of ferric iron-rich material.  相似文献   
47.
Benthic foraminiferal oxygen and carbon isotopic records from Southern Ocean sediment cores show that during the last glacial period, the South Atlantic sector of the deep Southern Ocean filled to roughly 2500 m with water uniformly low in δ13C, resulting in the appearance of a strong mid-depth nutricline similar to those observed in glacial northern oceans. Concomitantly, deep water isotopic gradients developed between the Pacific and Atlantic sectors of the Southern Ocean; the δ13C of benthic foraminifera in Pacific sediments remained significantly higher than those in the Atlantic during the glacial episode. These two observations help to define the extent of what has become known as the ‘Southern Ocean low δ13C problem’. One explanation for this glacial distribution of δ13C calls upon surface productivity overprints or changes in the microhabitat of benthic foraminifera to lower glacial age δ13C values. We show here, however, that glacial-interglacial δ13C shifts are similarly large everywhere in the deep South Atlantic, regardless of productivity regime or sedimentary environment. Furthermore, the degree of isotopic decoupling between the Atlantic and Pacific basins is proportional to the magnitude of δ13C change in the Atlantic on all time scales. Thus, we conclude that the profoundly altered distribution of δ13C in the glacial Southern Ocean is most likely the result of deep ocean circulation changes. While the characteristics of the Southern Ocean δ13C records clearly point to reduced North Atlantic Deep Water input during glacial periods, the basinal differences suggest that the mode of Southern Ocean deep water formation must have been altered as well.  相似文献   
48.
The 1991 eruption of Mount Pinatubo generated extreme sediment yields from watersheds heavily impacted by pyroclastic flows. Bedload sampling in the Pasig–Potrero River, one of the most heavily impacted rivers, revealed negligible critical shear stress and very high transport rates that reflected an essentially unlimited sediment supply and the enhanced mobility of particles moving over a smooth, fine-grained bed. Dimensionless bedload transport rates in the Pasig–Potrero River differed substantially from those previously reported for rivers in temperate regions for the same dimensionless shear stress, but were similar to rates identified in rivers on other volcanoes and ephemeral streams in arid environments. The similarity between volcanically disturbed and arid rivers appears to arise from the lack of an armored bed surface due to very high relative sediment supply; in arid rivers, this is attributed to a flashy hydrograph, whereas volcanically disturbed rivers lack armoring due to sustained high rates of sediment delivery. This work suggests that the increases in sediment supply accompanying massive disturbance induce morphologic and hydrologic changes that temporarily enhance transport efficiency until the watershed recovers and sediment supply is reduced.  相似文献   
49.
Understanding how the strength of basaltic rock varies with the extrinsic conditions of stress state, pressure and temperature, and the intrinsic rock physical properties is fundamental to understanding the dynamics of volcanic systems. In particular it is essential to understand how rock strength at high temperatures is limited by fracture. We have collated and analysed laboratory data for basaltic rocks from over 500 rock deformation experiments and plotted these on principal stress failure maps. We have fitted an empirical flow law (Norton’s law) and a theoretical fracture criterion to these data. The principal stress failure map is a graphical representation of ductile and brittle experimental data together with flow and fracture envelopes under varying strain rate, temperature and pressure. We have used these maps to re-interpret the ductile–brittle transition in basaltic rocks at high temperatures and show, conceptually, how these failure maps can be applied to volcanic systems, using lava flows as an example.  相似文献   
50.
Detailed soil erosion studies bene?t from the ability to quantify the magnitude of erosion over time scales appropriate to the process. An inventory balance for 7Be was used to calculate sediment erosion in a 30·73 m2 plot during a series of runoff‐producing thunderstorms occurring over three days at the Deep Loess Research Station in Treynor, Iowa, USA. The inventory balance included determination of the pre‐ and post‐storm 7Be inventories in the soil, the atmospheric in?ux of 7Be during the event, and pro?les of the 7Be activity in the soil following the atmospheric deposition. The erosion calculated in the plot using the 7Be inventory balance was 0·058 g cm?2, which is 23 per cent of the annual average erosion determined using 137Cs inventories. The calculated erosion from the mass balance is similar to the 0·059 g cm?2 of erosion estimated from the amount of sediment collected at the outlet of the 6 ha ?eld during the study period and the delivery ratio (0·64). The inventory balance of 7Be provides a new means for evaluating soil erosion over the time period most relevant to quantifying the prediction of erosion from runoff. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号