首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   13篇
  国内免费   2篇
测绘学   7篇
大气科学   43篇
地球物理   21篇
地质学   273篇
海洋学   24篇
天文学   5篇
自然地理   95篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   26篇
  2012年   7篇
  2011年   14篇
  2010年   10篇
  2009年   17篇
  2008年   12篇
  2007年   15篇
  2006年   10篇
  2005年   21篇
  2004年   15篇
  2003年   14篇
  2002年   5篇
  2001年   6篇
  2000年   10篇
  1999年   11篇
  1998年   17篇
  1997年   35篇
  1996年   26篇
  1995年   12篇
  1994年   20篇
  1993年   8篇
  1992年   7篇
  1991年   16篇
  1990年   20篇
  1989年   10篇
  1988年   12篇
  1987年   10篇
  1986年   9篇
  1985年   5篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
  1966年   2篇
  1963年   3篇
  1962年   1篇
排序方式: 共有468条查询结果,搜索用时 46 毫秒
381.
382.
Mawpyut igneous suite in Jaintia Hills of Meghalaya plateau comprises differentiated suite of ultramafic–mafic rocks. The complex differs from other ultramafic–alkaline–carbonatite igneous emplacements of Shillong plateau and Mikir Hills like Jesra, Sung, Samchampi complexes, by the absence of alkaline–carbonatite rocks as major litho-units. Melanite garnet-bearing nepheline syenite, occurs as late phase minor intrusion in Mawpyut igneous complex, posseses alkaline character and shows inubiquitous relation with the host ultramafic–mafic rocks. On the other hand, this alkaline intrusive bodies of the Mawpyut igneous complex shows chemico-mineralogical resemblance with garnet-bearing nepheline syenite, ijolite litho-members of Jesra, Sung, Samchampi complexes of the region. It is interpreted that melanite garnet-bearing nepheline syenite intrusion in Mawpyut is contemporaneous with Jesra, Sung, Samchampi ultramafic–alkaline–carbonatite complexes and the host rocks of Mawpyut complex is an earlier magmatic activity possibly from a comparatively least enriched source.  相似文献   
383.
In this study, the distribution of channel‐bed sediment facies in the lowermost Mississippi River is analysed using multibeam data, complemented by sidescan sonar and compressed high‐intensity radar pulse seismic data, as well as grab and core samples of bed material. The channel bed is composed of a discontinuous layer of alluvial sediment and a relict substratum that is exposed on the channel bed and sidewalls. The consolidated substratum is made up of latest Pleistocene and Early Holocene fluvio‐deltaic deposits and is preferentially exposed in the deepest thalweg segments and on channel sidewalls in river bends. The exposed substratum commonly displays a suite of erosional features, including flutes that are quantitatively similar in form to those produced under known laboratory conditions. A total of five bed facies are mapped, three of which include modern alluvial deposits and two facies that are associated with the relict substratum. A radius of curvature analysis applied to the Mississippi River centreline demonstrates that the reach‐scale distribution of channel‐bed facies is related to river planform. From a broader perspective, the distribution of channel‐bed facies is related to channel sinuosity — higher sinuosity promotes greater substratum exposure at the expense of alluvial sediment. For example, the ratio of alluvial cover to substratum is ca 1·5:1 for a 45 km segment of the river that has a sinuosity of 1·76 and this ratio increases to ca 3:1 for a 120 km segment of the river that has a sinuosity of 1·21. The exposed substratum is interpreted as bedrock and, given the relative coverage of alluvial sediment in the channel, the lowermost Mississippi River can be classified as a mixed bedrock‐alluvial channel. The analyses demonstrate that a mixed bedrock‐alluvial channel boundary can be associated with low‐gradient and sand‐bed rivers near their marine outlet.  相似文献   
384.
Submarine mass movement deposits exposed in the Vischkuil Formation, Laingsburg Karoo Basin, South Africa, provide a rare opportunity to analyse and interpret their emplacement history and deformation processes at a scale comparable to seismic examples. An up to 80 m thick slide deposit, continuously exposed in two 2 km long sub‐parallel sections, passes from extensionally deformed material (clastic dykes and down‐dip facing low‐angle shear surfaces) down‐dip into a compressional toe zone with large (tens of metres amplitude) folds dissected by steep, up‐dip facing thrust planes. The compressional shear planes sole out onto a highly sheared décollement and cross‐cutting relationships indicate an up‐depositional dip younging in the timing of fold dissection. Lithofacies characteristics and detailed correlation of volcanic ash and other marker beds over more than 500 km2 in the bounding undeformed stratigraphy indicate a low‐gradient (<0·1°) basin floor setting. The slide is abruptly overlain by an up to 50 m thick debrite with sandy clasts supported by an argillaceous matrix. Shear loading of the debris flow is interpreted to have driven large‐scale deformation of the substrate through the generation of high shear stresses at a rheological interface due to: (i) the abrupt contact between the slide and the debrite; (ii) the coincident thickness distributions of the debrite and slide; (iii) the distribution of the most intense folding and thrusting under the thickest parts of the debrite; (iv) the preservation of fold crests with only minor erosion along fold limbs; (v) the presence of the debrite under overturned folds; (vi) the presence of laterally extensive marker beds directly above deformation units indicating minimal depositional topography; and (vii) the demonstrably local derivation of the slide as individual folded beds are mapped into undeformed strata outside the areas of deformation. The debrite is directly overlain by fine‐grained turbidite sandstone beds that show widespread vertical foundering into the debrite. This case study demonstrates that intensely deformed strata can be generated by negligible amounts of down‐dip movement in a low‐gradient, fine‐grained basin floor setting with the driver for movement and deformation being the mass imbalance resulting from emplacement of episodic debris flows. Simple interpretation of an unstable slope setting based on the presence of such deformed strata should be treated with caution.  相似文献   
385.
An injection dyke of fine-grained sandstone derived from the Kellaways Sand Formation intrudes overlying organic-rich shales and shell beds of the Lower Oxford Clay. The dyke shows cross-cutting relationships with early carbonate concretions, and fills uncompacted kosmoceratid ammonite shells both within the concretions and surrounding shales. Internally the dyke displays flow-like features, and the walls show lobate flow structures. Clasts of uncompacted Lower Oxford Clay and fragments of pyrite-rich concretions occur within the sandstone intrusions. The sandstone of the dyke was cemented by calcite identical to that precipitated in septarian cracks in the concretions. This cementation took place prior to final compaction of the Oxford Clay. The dyke has a sub-parallel relationship to the nearby Tinwell-Marholm fault suggesting that the dyke may be related to local tectonic events during the Middle Jurassic.  相似文献   
386.
The Medusa effect: instantaneous fossilization   总被引:1,自引:0,他引:1  
Rapid fossilization of fishes and other animals in the Lower Cretaceous of the Chapada do Araripe, north-east Brazil, has preserved the most delicate structures known in the fossil record. Gills, muscles, stomachs and even eggs with yolks have been found. Interestingly, the material is not particularly rare, and specimens can be purchased from your local rock shop.  相似文献   
387.
In Canyonlands National Park, south-east Utah, at least 29 partly exhumed, aligned sandstone ridges trending generally N20°W occur at the upper unconformable surface of the Lower Permian (Leonardian) White Rim Sandstone. The ridges are at least 1·5 km long, 250 m wide and have up to 14 m of vertical relief (mean of 9 m). A thin lag of coarse sandstone that contains wind-ripple laminae and granule ripples directly overlies the ridges. Angular blocks of sandstone within the lag and sand-filled fissures immediately below the lag, within the ridges, attest to early cementation of the ridge-forming material. SE-dipping aeolian cross-strata within the White Rim Sandstone and within the lag closely parallel the ridge trend. The ridges are interpreted as wind-sculpted desert landforms (yardangs) that developed on the lithified upper surface of the White Rim Sandstone during an extended period of hyperaridity towards the end of the Permian.  相似文献   
388.
A series of sensitivity analyses using dielectric, mixture and microwave scattering models is presented. Data from the Seasonal Sea Ice Monitoring and Modeling Site (SIMMS) in 1990 and 1991 are used to initialize the models. The objective of the research is to investigate the role of various geophysical and electrical properties in specifying the total relative scattering cross section (ρ') of snow covered first-year sea ice during the spring period.
The seasonal transition period from the Winter SAR scattering season to Early Melt was shown to signal a transition in dielectric properties which caused the snow volume to become a factor in the microwave scattering process. The effect of the thermal insulation of a snow cover on sea ice was shown to be significant for both ε' and ε'. Higher atmospheric temperatures caused proportionally greater changes in the dielectric properties of the sea ice at the base of the snow cover. Model ρ0 was computed for a range of sensor, sensor-earth geometry, and geophysical properties. In the Winter season the surface roughness terms (ohand L) were shown to have a significant impact on ρ0 when the ice surface was the primary scattering mechanism. Once the snow cover began to warm and water was available in a liquid phase, the ice surface became masked because of the decrease in microwave penetration depths. During this period the water volume variable dominated ρ0, both from its impact on ρv0, and due to its control over the dielectric mismatch created at the air/snow interface.  相似文献   
389.
Microbiological effects on slope stability: an experimental analysis   总被引:1,自引:0,他引:1  
A natural, pure quartz sand has been seeded with the bacterium Pseudomonas atlantica and the fungus Penicillium chrysogenum, and angles of avalanche and repose have been measured under water using a laboratory clinometer. The lowest angles of avalanche occur in freshly packed clean sediment (control), with the seeded sediments having higher values. Among the latter, the lowest angles of repose occur in the bacterial seeded sediments, and the highest in the fungal seeded sediments. The largest differences between the angle of avalanche and angle of repose occur in the bacterial seeded and media control sediments. The smallest differences occur in the fungal seeded sediment. In most cases the second angle of avalanche is lower than the first angle of avalanche, whilst the second angle of repose is higher than the first angle of repose. The bacteria bind particles together with their extracellular polymeric material, while the fungus binds particles by holding them together with a network of hyphal filaments. In the bacterial seeded sediment growth is uniform over the sediment surface. In the fungal seeded sediment growth occurs as discrete colonies separated by bare sediment, and the fungal hyphae penetrate the sediment to a significant depth. On avalanching, the fungal colonies move down the slope with the hyphal filaments trailing behind them in the sediment. Overall, both the bacterium and the fungus increase slope stability. However, the fungal colonies maintain slope stability after avalanching more effectively than does the uniform bacterial growth. The results are discussed in relation to the wide range of biological effects that stabilize flat sediments and to laboratory and field studies on the stability of sediment slopes.  相似文献   
390.
The study area, just to the west of the Verrill Canyon on the Scotian Slope, eastern Canada, exhibits both large and small scale sediment mass movement features. Study of high resolution seismic reflection and sidescan sonar data shows that a large portion (approximately 70%) of the near surface sediment (<20 m) in the area has undergone erosion, rotational slumping and internal deformation. Remoulded sediment observed in physical properties profiles of piston cores and sediment deformation structures are further evidence of slumping. Small scale mass flow events are recorded by abundant turbidites and debris flow deposits noted in piston cores. Sediment physical properties are highly dependent on sediment type (lithofacies). Frequent facies changes, both temporally and spatially, make correlation between cores difficult. Although the small scale mass movement events correlate with glacial recession on the continental shelf and lower relative sea levels, the triggering mechanisms for the large scale events are less obvious. Slope stability analyses indicate that, at present, the seabed is stable. The most plausible explanation for large scale slope failures in this region are ground accelerations related to earthquake shock. Our analyses demonstrate that it is unlikely that large magnitude, distant earthquakes, such as those previously proposed in the Laurentian Slope Seismic Zone (LSP) model, could initiate failure of sediment in the study region. Our data support the interpretation that more frequent, lower magnitude earthquakes, closer to the study region, as previously proposed in the Eastern Slope Experimental Source Zone (ESX) model, are the likely causes of large scale slope failures. Furthermore, excess pore pressures resulting from shallow gas and/or high sedimentation rates during deglaciation contribute to slope failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号