首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2810篇
  免费   162篇
  国内免费   35篇
测绘学   111篇
大气科学   241篇
地球物理   648篇
地质学   1068篇
海洋学   237篇
天文学   420篇
综合类   15篇
自然地理   267篇
  2023年   15篇
  2022年   24篇
  2021年   74篇
  2020年   96篇
  2019年   84篇
  2018年   98篇
  2017年   114篇
  2016年   138篇
  2015年   96篇
  2014年   123篇
  2013年   175篇
  2012年   135篇
  2011年   180篇
  2010年   154篇
  2009年   163篇
  2008年   144篇
  2007年   103篇
  2006年   106篇
  2005年   102篇
  2004年   86篇
  2003年   89篇
  2002年   69篇
  2001年   54篇
  2000年   45篇
  1999年   35篇
  1998年   32篇
  1997年   33篇
  1996年   32篇
  1995年   28篇
  1994年   15篇
  1993年   16篇
  1992年   22篇
  1991年   19篇
  1990年   23篇
  1989年   13篇
  1988年   15篇
  1987年   20篇
  1986年   9篇
  1985年   21篇
  1984年   26篇
  1983年   18篇
  1982年   19篇
  1981年   22篇
  1980年   14篇
  1979年   8篇
  1978年   12篇
  1977年   14篇
  1976年   10篇
  1975年   14篇
  1974年   16篇
排序方式: 共有3007条查询结果,搜索用时 15 毫秒
91.
The Sheep Mountain‐Little Sheep Mountain Anticlines, Bighorn Basin (USA) formed as basement‐cored Laramide structures in the formerly undeformed foreland of the thin‐skinned Sevier orogen. We take advantage of the well‐constrained microstructural network there to reconstruct differential stress magnitudes that prevailed during both Sevier and Laramide layer‐parallel shortening (LPS), before the onset of large‐scale folding. Differential stress magnitudes determined from tectonic stylolites are compared and combined to previous stress estimates from calcite twinning paleopiezometry in the same formations. During stress loading related to LPS, differential stress magnitudes transmitted from the distant Sevier thin‐skinned orogen into the sedimentary cover of the Bighorn basin (11–43 MPa) are higher than the differential stress magnitudes accompanying the early stage of LPS related to the thick‐skinned Laramide deformation (2–19 MPa). This study illustrates that the tectonic style of an orogen affects the transmission of early orogenic stress into the stable continental interior.  相似文献   
92.
New insights on the Paleozoic evolution of the continental crust in the North Patagonian Massif are presented based on the analysis of Sm–Nd systematics. New evidence is presented to constrain tectonic models for the origin of Patagonia and its relations with the South American crustal blocks. Geologic, isotopic and tectonic characterization of the North Patagonian Massif and comparison of the Nd parameters lead us to conclude that: (1) The North Patagonian Massif is a crustal block with bulk crustal average ages between 2.1 and 1.6 Ga TDM (Nd) and (2) At least three metamorphic episodes could be identified in the Paleozoic rocks of the North Patagonian Massif. In the northeastern corner, Famatinian metamorphism is widely identified. However field and petrographic evidence indicate a Middle to Late Cambrian metamorphism pre-dating the emplacement of the ca. 475 Ma granitoids. In the southwestern area, are apparent 425–420 Ma (?) and 380–360 Ma metamorphic peaks. The latter episode might have resulted from the collision of the Antonia terrane; and (3) Early Paleozoic magmatism in the northeastern area is coeval with the Famatinian arc. Nd isotopic compositions reveal that Ordovician magmatism was associated with attenuated crust. On the southwestern border, the first magmatic recycling record is Devonian. Nd data shows a step by step melting of different levels of the continental crust in the Late Palaeozoic. Between 330 and 295 Ma magmatism was likely the product of a crustal source with an average 1.5 Ga TDM (Nd). Widespread magmatism represented by the 295–260 Ma granitoids involved a lower crustal mafic source, and continued with massive shallower-acid plutono volcanic complexes which might have recycled an upper crustal segment of the Proterozoic continental basement, resulting in a more felsic crust until the Triassic. (4) Sm–Nd parameters and detrital zircon age patterns of Early Paleozoic (meta)-sedimentary rocks from the North Patagonian Massif and those from the neighboring blocks, suggest crustal continuity between Eastern Sierras Pampeanas, southern Arequipa-Antofalla and the northeastern sector of the North Patagonian Massif by the Early Paleozoic. This evidence suggests that, at least, this corner of the North Patagonian Massif is not allochthonous to Gondwana. A Late Paleozoic frontal collision with the southwestern margin of Gondwana can be reconcilied in a para-autochthonous model including a rifting event from a similar or neighbouring position to its post-collision location. Possible Proterozoic or Early Paleozoic connections of the NPM with the Kalahari craton or the western Antartic blocks should be investigated.  相似文献   
93.
Stream water temperature plays a significant role in aquatic ecosystems where it controls many important biological and physical processes. Reliable estimates of water temperature at the daily time step are critical in managing water resources. We developed a parsimonious piecewise Bayesian model for estimating daily stream water temperatures that account for temporal autocorrelation and both linear and nonlinear relationships with air temperature and discharge. The model was tested at 8 climatically different basins of the USA and at 34 sites within the mountainous Boise River Basin (Idaho, USA). The results show that the proposed model is robust with an average root mean square error of 1.25 °C and Nash–Sutcliffe coefficient of 0.92 over a 2‐year period. Our approach can be used to predict historic daily stream water temperatures in any location using observed daily stream temperature and regional air temperature data.  相似文献   
94.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   
95.
96.
The interplay of eustatic and isostatic factors causes complex relative sea‐level (RSL) histories, particularly in paraglacial settings. In this context the past record of RSL is important in understanding ice‐sheet history, earth rheology and resulting glacio‐isostatic adjustment. Field data to develop sea‐level reconstructions are often limited to shallow depths and uncertainty exists as to the veracity of modelled sea‐level curves. We use seismic stratigraphy, 39 vibrocores and 26 radiocarbon dates to investigate the deglacial history of Belfast Lough, Northern Ireland, and reconstruct past RSL. A typical sequence of till, glacimarine and Holocene sediments is preserved. Two sea‐level lowstands (both max. ?40 m) are recorded at c. 13.5 and 11.5k cal a bp . Each is followed by a rapid transgression and subsequent periods of RSL stability. The first transgression coincides temporally with a late stage of Meltwater Pulse 1a and the RSL stability occurred between c. 13.0 and c. 12.2k cal a bp (Younger Dryas). The second still/slowstand occurred between c. 10.3 and c. 11.5k cal a bp . Our data provide constraints on the direction and timing of RSL change during deglaciation. Application of the Depth of Closure concept adds an error term to sea‐level reconstructions based on seismic stratigraphic reconstructions.  相似文献   
97.
We explored the submarine portions of the Enriquillo–Plantain Garden Fault zone (EPGFZ) and the Septentrional–Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high‐resolution multibeam echo‐sounding and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200 km between Haiti and Jamaica (EPGFZ) and 300 km between the Dominican Republic and Cuba (SOFZ). The primary plate‐boundary structures are a series of strike‐slip fault segments associated with pressure ridges, restraining bends, step overs and dogleg offsets indicating very active tectonics. Several distinct segments 50–100 km long cut across pre‐existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike‐slip regime. Along the most recent trace of the SOFZ, we measured a strike‐slip offset of 16.5 km, which indicates steady activity for the past ~1.8 Ma if its current GPS‐derived motion of 9.8 ± 2 mm a?1 has remained stable during the entire Quaternary.  相似文献   
98.
99.
This paper proposes a numerical approach to the hyperstatic reaction method (HRM) for the analysis of segmental tunnel linings. The influence of segmental joints has been considered directly using a fixity ratio that is determined on the basis of the rotational stiffness. The parameters necessary for the calculation are presented. A specific implementation has been developed using a FEM framework. This code is able to consider the three‐dimensional (3D) effect of segment joints in successive rings on the tunnel lining behaviour. The present HRM allows one to take an arbitrary distribution of segment joints along the tunnel boundary into consideration. In addition, the rotational stiffness of segment joints has been simulated using nonlinear behaviour, as it is closer to the true behaviour of a joint than linear or bilinear behaviour. The numerical results of three hypotheses on ring interaction, which allow the 3D effect of a segmental tunnel lining to be taken into account, have been compared with data obtained from the shield‐driven tunnel of the Bologna–Florence high‐speed railway line project. The numerical results presented in the paper show that the proposed HRM can be used to effectively estimate the behaviour of a segmental tunnel lining. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号