首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2918篇
  免费   173篇
  国内免费   35篇
测绘学   115篇
大气科学   246篇
地球物理   682篇
地质学   1066篇
海洋学   248篇
天文学   478篇
综合类   16篇
自然地理   275篇
  2023年   15篇
  2022年   27篇
  2021年   66篇
  2020年   95篇
  2019年   79篇
  2018年   100篇
  2017年   111篇
  2016年   146篇
  2015年   107篇
  2014年   127篇
  2013年   181篇
  2012年   141篇
  2011年   185篇
  2010年   164篇
  2009年   172篇
  2008年   153篇
  2007年   115篇
  2006年   110篇
  2005年   112篇
  2004年   95篇
  2003年   88篇
  2002年   72篇
  2001年   59篇
  2000年   49篇
  1999年   35篇
  1998年   33篇
  1997年   36篇
  1996年   33篇
  1995年   29篇
  1994年   14篇
  1993年   18篇
  1992年   23篇
  1991年   20篇
  1990年   25篇
  1989年   16篇
  1988年   14篇
  1987年   18篇
  1986年   9篇
  1985年   22篇
  1984年   26篇
  1983年   19篇
  1982年   19篇
  1981年   24篇
  1980年   16篇
  1979年   9篇
  1978年   12篇
  1977年   13篇
  1976年   10篇
  1975年   15篇
  1974年   16篇
排序方式: 共有3126条查询结果,搜索用时 15 毫秒
101.
102.
We explored the submarine portions of the Enriquillo–Plantain Garden Fault zone (EPGFZ) and the Septentrional–Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high‐resolution multibeam echo‐sounding and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200 km between Haiti and Jamaica (EPGFZ) and 300 km between the Dominican Republic and Cuba (SOFZ). The primary plate‐boundary structures are a series of strike‐slip fault segments associated with pressure ridges, restraining bends, step overs and dogleg offsets indicating very active tectonics. Several distinct segments 50–100 km long cut across pre‐existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike‐slip regime. Along the most recent trace of the SOFZ, we measured a strike‐slip offset of 16.5 km, which indicates steady activity for the past ~1.8 Ma if its current GPS‐derived motion of 9.8 ± 2 mm a?1 has remained stable during the entire Quaternary.  相似文献   
103.
104.
Groundwater storage, drainage, and interbasin water exchange are common hydrological processes but often difficult to quantify due to a lack of local observations. We present a study of three volcanic mountainous watersheds located in south‐central Chile (~36.9 ° S) in the Chillán volcanic complex (Chillán, Renegado, and Diguillín river basins). These are neighboring basins that are similar with respect to the metrics normally available for characterization everywhere (e.g., precipitation, temperature, and land cover). In a hydrological sense, similar (proportional) behavior would be expected if these catchments would be characterized with this general information. However, these watersheds show dissimilar behavior when analyzed in detail. The surface water balance does not fit for any of these watersheds individually; however, the water balance of the whole system can be explained by likely interbasin water exchanges. The Renegado river basin has an average annual runoff per unit of area on the order of 60–65% less than those of the Diguillín and Chillán rivers, which is contradictory to the hydrological similarity among the basins. To understand the main processes that control streamflow generation, two analyses were performed: (a) basin metrics (land cover, geologic, topographic, and climatological maps) and hydro‐meteorological data analyses and (b) a water balance model approach. The analyses contribute to a plausible explanation for the hydrogeological processes in the system. The soils, topography, and geology of the Chillán–Renegado–Diguillín system favor the infiltration and groundwater movements from the Renegado river basin, mainly to the neighboring Diguillín basin. The interbasin water exchanges affect hydrological similarity and explain the differences observed in the hydrological processes of these three apparently similar volcanic basins. The results highlight the complexity of hydrological processes in volcanic mountainous systems and suggest that a simple watershed classification approach based on widely available data is insufficient. Simple local analyses such as specific flow analysis with a review of the geology and morphology can contribute to a better understanding of the hydrology of volcanic mountainous areas.  相似文献   
105.
This paper proposes a numerical approach to the hyperstatic reaction method (HRM) for the analysis of segmental tunnel linings. The influence of segmental joints has been considered directly using a fixity ratio that is determined on the basis of the rotational stiffness. The parameters necessary for the calculation are presented. A specific implementation has been developed using a FEM framework. This code is able to consider the three‐dimensional (3D) effect of segment joints in successive rings on the tunnel lining behaviour. The present HRM allows one to take an arbitrary distribution of segment joints along the tunnel boundary into consideration. In addition, the rotational stiffness of segment joints has been simulated using nonlinear behaviour, as it is closer to the true behaviour of a joint than linear or bilinear behaviour. The numerical results of three hypotheses on ring interaction, which allow the 3D effect of a segmental tunnel lining to be taken into account, have been compared with data obtained from the shield‐driven tunnel of the Bologna–Florence high‐speed railway line project. The numerical results presented in the paper show that the proposed HRM can be used to effectively estimate the behaviour of a segmental tunnel lining. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
106.
107.
This study investigated the Grabia River valley mire in central Poland to reconstruct its palaeoenvironmental conditions from the Younger Dryas to the present. We analysed sedimentological, biological and geochemical data from the palaeo‐oxbow lake and valley mire to identify the principal hydrological trends, especially episodes of high water level. During the Lateglacial and Holocene, the Grabia River had a meandering channel, and its hydraulic parameters and the channel dimensions changed in response to climatic oscillations and vegetation development. We identified phases of high flood intensity and high groundwater level that correlate with regional and supraregional climatic events. The frequency and timing of palaeohydroclimatic oscillations show strong similarities to records from other sites in Poland and the rest of Europe. We show that various analytical methods, namely, pollen, plant macrofossils, Cladocera, Chironomidae, sedimentological, geochemical and radiocarbon data, can be effective tools for reconstructing past hydroclimatic changes in palaeo‐oxbow lakes and investigating the effects of past climate changes on river environments. The high sensitivity of the biota, especially Cladocera, to changes in water level permits the reconstruction of palaeoecological changes, especially flood episodes that occurred in the river valley. In particular, the increase in the proportion of sediment‐associated Cladocera and pelagic taxa was closely correlated with floods. Through comparisons with the palaeobiological data, geochemical data allowed the identification of humid phases within the fen associated with a rising groundwater table, direct fluvial activity (floods) and alluvial deposition. We also discuss the limitations of palaeohydrological reconstructions based on these proxies, especially on fossil aquatic invertebrates.  相似文献   
108.
109.
110.
Exhumed basin margin‐scale clinothems provide important archives for understanding process interactions and reconstructing the physiography of sedimentary basins. However, studies of coeval shelf through slope to basin‐floor deposits are rarely documented, mainly due to outcrop or subsurface dataset limitations. Unit G from the Laingsburg depocentre (Karoo Basin, South Africa) is a rare example of a complete basin margin scale clinothem (>60 km long, 200 m‐high), with >10 km of depositional strike control, which allows a quasi‐3D study of a preserved shelf‐slope‐basin floor transition over a ca. 1,200 km2 area. Sand‐prone, wave‐influenced topset deposits close to the shelf‐edge rollover zone can be physically mapped down dip for ca. 10 km as they thicken and transition into heterolithic foreset/slope deposits. These deposits progressively fine and thin over tens of km farther down dip into sand‐starved bottomset/basin‐floor deposits. Only a few km along strike, the coeval foreset/slope deposits are bypass‐dominated with incisional features interpreted as minor slope conduits/gullies. The margin here is steeper, more channelized and records a stepped profile with evidence of sand‐filled intraslope topography, a preserved base‐of‐slope transition zone and sand‐rich bottomset/basin‐floor deposits. Unit G is interpreted as part of a composite depositional sequence that records a change in basin margin style from an underlying incised slope with large sand‐rich basin‐floor fans to an overlying accretion‐dominated shelf with limited sand supply to the slope and basin floor. The change in margin style is accompanied with decreased clinoform height/slope and increased shelf width. This is interpreted to reflect a transition in subsidence style from regional sag, driven by dynamic topography/inherited basement configuration, to early foreland basin flexural loading. Results of this study caution against reconstructing basin margin successions from partial datasets without accounting for temporal and spatial physiographic changes, with potential implications on predictive basin evolution models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号