首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2905篇
  免费   168篇
  国内免费   41篇
测绘学   116篇
大气科学   245篇
地球物理   666篇
地质学   1080篇
海洋学   251篇
天文学   474篇
综合类   14篇
自然地理   268篇
  2023年   20篇
  2022年   30篇
  2021年   72篇
  2020年   94篇
  2019年   94篇
  2018年   99篇
  2017年   120篇
  2016年   143篇
  2015年   105篇
  2014年   127篇
  2013年   180篇
  2012年   135篇
  2011年   183篇
  2010年   161篇
  2009年   175篇
  2008年   149篇
  2007年   106篇
  2006年   105篇
  2005年   107篇
  2004年   85篇
  2003年   83篇
  2002年   72篇
  2001年   56篇
  2000年   50篇
  1999年   35篇
  1998年   29篇
  1997年   35篇
  1996年   31篇
  1995年   29篇
  1994年   15篇
  1993年   16篇
  1992年   23篇
  1991年   18篇
  1990年   22篇
  1989年   13篇
  1988年   16篇
  1987年   22篇
  1986年   9篇
  1985年   24篇
  1984年   26篇
  1983年   22篇
  1982年   22篇
  1981年   22篇
  1980年   14篇
  1979年   10篇
  1978年   15篇
  1977年   15篇
  1976年   11篇
  1975年   17篇
  1974年   16篇
排序方式: 共有3114条查询结果,搜索用时 15 毫秒
991.
A possible new molecular mechanism of thundercloud electrification   总被引:1,自引:1,他引:1  
Thunderclouds are electrified when charge is transferred between small and large ice particles colliding in a cloud that contains strong updrafts. The small ice particles rise with one type of charge and the large ice particles fall and carry with them downward the other type of charge, which is most often negative, so that normally lightning lowers negative charge from cloud to the ground. While the collisional mechanism of thundercloud charging is well established, the nature of the charge transfer between the colliding ice particles is not very well understood on the atomic level, and no present theory can explain it in full detail. Here we propose a new charge separation mechanism that is based on molecular dynamics simulations of particle surfaces and collisions, keeping track of the individual charges as they move in the form of salt ions from one ice particle to another. Under normal conditions, when sulfates dominate as cloud condensation nuclei, this ionic mechanism is consistent with the prevailing negative charging of graupels in thunderclouds. Moreover, with dearth of sulfate anions, the present mechanism predicts a shift towards positive charging. This fits well to a large range of observations of enhanced positive lightning, connected with smoke rich in chlorides and nitrates, that could not be explained satisfactorily previously.  相似文献   
992.
Precipitation and evaporation budgets over the Baltic Sea were studied in a concerted project called PEP in BALTEX (Pilot study of Evaporation and Precipitation in the Baltic Sea), combining extensive field measurements and modelling efforts. Eddy-correlation-measurements of turbulent heat flux were made on a semi-continuous basis for a 12 month period at four well-exposed coastal sites in the Baltic Proper (the main basin of the Baltic Sea). Precipitation was measured at land-based sites with standard gauges and on four merchant ships travelling between Germany and Finland with the aid of specially designed ship rain gauges (SRGs). The evaporation and precipitation regime of the Baltic Sea was modelled for a 12 month period by applying a wide range of numerical models: the operational atmospheric High Resolution Limited Area Model (HIRLAM, Swedish and Finnish versions), the German atmospheric REgional-scale MOdel, REMO, the operational German Europe Model (only precipitation), the oceanographic model PROBE-Baltic, and two models that use interpolation of ground-based data, the Swedish MESAN model of SMHI and a German model of IFM-GEOMAR Kiel. Modelled precipitation was compared with SRG measurements on board the ships. A reasonable correlation was obtained, but the regional-scale models and MESAN gave some 20% higher precipitation over the sea than is measured. Bulk parameterisation schemes for evaporation were evaluated against measurements. A constant value of CHN and CEN with wind speed, underestimated large fluxes of both sensible and latent heat flux. The limited area models do not resolve the influence of the height of the marine boundary layer in coastal zones and the entrainment (on the surface fluxes), which may explain the observed low correlations between modelled and measured latent heat fluxes. Estimates of evaporation, E, and precipitation, P, for the entire Baltic Proper were made with several models for a 12 month period. While the annual variation was well represented by all predictions, there are still important differences in the annual means. Evaporation ranges from 509 to 625 mm year-1 and precipitation between 624 and 805 mm year-1 for this particular 12 month period. Taking the results of model verification from the present study into account, the best estimate of P-E is about 100 ± 50 mm for this particular 12 month period. But the annual mean of P-E varies considerably from year to year. This is reflected in simulations with the PROBE-Baltic model for an 18 year period, which gave 95 mm year-1 for the 12 month period studied here and 32 mm year-1 as an average for 18 years.  相似文献   
993.
Numerical schemes for the calculation of photolysis rates are usually employed in simulations of stratospheric chemistry. Here, we present an improvement of the treatment of the diffuse actinic flux in a widely used stratospheric photolysis scheme (Lary and Pyle, 1991). We discuss both the consequences of this improvement and the correction of an error present in earlier applications of this scheme on the calculation of stratospheric photolysis frequencies. The strongest impact of both changes to the scheme is for small solar zenith angles. The effect of the improved treatment of the diffuse flux is most pronounced in the lower stratosphere and in the troposphere. Overall, the change in the calculated photolysis frequencies in the region of interest in the stratosphere is below about 20%, although larger deviations are found for H2O, O2, NO, N2O, and HCl.  相似文献   
994.
We measured δ13C values of free and sulfur-bound lipids and framboidal pyrite-size distributions in three sediment cores from the southern margins of the Black Sea. The margin cores show a marked difference in the occurrence of biomarkers from green sulfur bacteria compared with the deep-basin cores, as a result of deepening of the chemocline resulting from enhanced mixing and/or decreased light-penetration as a consequence of high turbidity and productivity in shelf waters. Quantitation of biomarkers suggests that photic-zone anoxia along the shelf margin was generally absent during the deposition of unit I, although occurred during the deposition of Unit IIb at two sites.  相似文献   
995.
Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high‐grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote‐amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle‐derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted.  相似文献   
996.
Abstract Sandstones from the Upper Cretaceous to Eocene succession of Central Palawan are rich in quartz grains and acidic volcanic rock fragments. Potassium feldspar grains and granitic rock fragments are commonly observed. The moderate to high SiO2 and low FeO plus MgO contents of the sandstones support the proposal that clasts were derived from a continental source region. Southern China (Kwangtung and Fukien regions) is inferred to be the source area of the sandstones. The sedimentary facies of the Upper Cretaceous to Eocene succession consist of turbidite and sandstones, suggesting that they were deposited in the deep sea portions of submarine-fans and basin plains situated along a continental margin. These features indicate that the Upper Cretaceous to Eocene succession of the Central Palawan were derived and drifted from the southern margin of China. The tectonic history related to the formation of Palawan Island is also discussed.  相似文献   
997.
Urs Eggenberger  Daniel Kurz   《Chemical Geology》2000,170(1-4):243-257
The steady-state soil chemistry model PROFILE was used to calculate the chemical status of forest soils under present deposition loads for two areas with dissimilar ecosystem properties. Two regions in Switzerland, with contrasting bedrock geology were selected to be investigated in detail: 88 locations in the Jura Mountains, representative for carbonate bedrock and 91 locations in the Ticino Area dominated by metamorphic crystalline host rocks. Weathering rates calculated for the key regions cover the tremendous range between 0.013 and 25 keq ha−1 yr−1. In the Ticino Area, the effect of increased abundance of relatively fast weathering silicates (epidote, hornblende and plagioclase) on the weathering rate is apparently masked by the total effects of the physical conditions applied and by the variation in the deposition load. In the Jura Mountains, generally high weathering rates occur with about 50% of the sites yielding rates above 1 keq ha−1 yr−1. In many of the sites investigated, however, carbonates have already been dissolved completely in the soil horizons of interest resulting in very low weathering rates. The critical load of actual acidity was calculated according to: CLAcidity=RWeathering−ANCLeaching, where alkalinity leaching is estimated by keeping the base cation to aluminum molar ratio at the critical limit of 1 at steady-state. The minimum critical load calculated was 0.2 keq ha−1 yr−1 and the maximum was 6.2 keq ha−1 yr−1. Comparing the cumulative frequency distributions of critical loads of actual acidity for forest soils in the individual areas it can be seen that the differences between the key regions are less substantial than with the weathering rates. Critical loads of acidity for the Ticino Area range from 1 to 3.9 keq ha−1 yr−1. Sites yielding the lowest critical loads of acidity are observed in the Jura Mountains. Among these apparent sensitive soils are soils with intermediate or high weathering rates, although it has depleted topsoil layers. Within the context of this model application, it becomes apparent that the sensitivity of these soils with respect to acidification is also governed by the alkalinity leaching term and not only by the susceptibility of its minerals to weathering.  相似文献   
998.
Gumer Galn  Alberto Marcos 《Lithos》2000,54(3-4):139-171
The high pressure mafic granulites of the Bacariza Formation outcrop in the two uppermost structural units of the Cabo Ortegal Complex (La Capelada unit and Cedeira unit) were separated by a Variscan thrust. In both cases, they appear as heterogeneous metabasites in normal contact between ultramafic rocks and other more homogeneous and less differentiated metabasic rocks, also affected by catazonal metamorphism. The main difference between the mafic granulites in the two units is the degree of deformation, which is higher in the underlying Cedeira unit. Petrologic and mineralogical data indicate that the high-pressure (HP) granulites (Gt-Cpx±Amp-Pl±Qtz±Scp-Rt±Ilm-Czo) are already retrograde (M2 Stage), post-dating an earlier eclogite facies metamorphism (M1 Stage) characterised by the mineral associations: Gt-Cpx±Amp±Ky±Qtz-Rt and Gt-Cpx±Amp±Qtz±Zo-Rt. The main structure related to the exhumation processes is the development of a general mylonitic foliation that, although initiated in granulite facies conditions, was mainly equilibrated in amphibolite facies (M3 Stage). This foliation was affected by isoclinal folds, which led to the formation of the Variscan thrusts responsible for the present stacking position. Thrust conditions were transitional between amphibolite and greenschist facies (M4 Stage). Thermobarometric data point to different PT exhumation paths in the two units. Estimated PT conditions were higher in La Capelada unit during M1 (P≥13 kbar; 860°C) and M2 (15 kbar; 800°C) than in the Cedeira unit (M1: P≥11 kbar, 770°C; M2: 12 kbar; 750°C). Temperatures for the M3 stage were comparable (720°C) in both units but rocks from the Cedeira unit show a much bigger drop in pressure. This resulted in an isothermal decompression type path for the Cedeira unit, while both P and T decreased more steadily in La Capelada rocks. These were always located at deeper level than the Cedeira rocks before the Variscan stacking. The difference in the two paths is related to different exhumation rates; higher in rocks from the Cedeira unit than in those from La Capelada. Exhumation processes coeval with underthrusting, and a different location of the rocks with respect to the main shear zone responsible for the exhumation would account for the distinct paths.  相似文献   
999.
The effect of heat and illumination with visible light on the oxidation of pyrite with dissolved molecular oxygen in solutions between pH 2 and 6 has been investigated using a combination of surface science experiments and batch oxidation experiments. The rate of the oxidation of pyrite is strongly dependent on temperature. It is, however, not possible to cast the temperature dependence in a simple Arrhenius equation because the magnitude of the activation energy depends on the progress variable chosen. Activation energies based on proton release rate, sulfate release rate, and total iron release rate vary by as much as 40 kJ mol-1, suggesting that the oxidation mechanism of the sulfur and iron component of pyrite are largely independent of each other. This difference in mechanism can also explain why the reaction rates on the basis of these three different progress variables do not show the same pH dependence. Exposed to visible light, the rate of pyrite oxidation is under most conditions accelerated by less than a factor of two. Some of this acceleration may be accounted for by a light-induced heating of the pyrite surface. Surface science experiments employing photoelectron spectroscopy show no evidence for significant changes in the chemical composition of the surface as a function of exposure to visible light. The batch sorption experiments show, however, that the reaction stoichiometry changes somewhat, which indicates that there might be a change in reaction mechanism as a result of exposure to visible light.  相似文献   
1000.
Thin-plate flexure models have been frequently used to explain the mechanical behaviour of the lithosphere at oceanic trenches, but little attention has been paid to using them as a way to check the relative importance of different plate-driving mechanisms. A 2-D numerical algorithm accounting for the flexural deflection of the lithosphere controlled by multilayered elastic–plastic rheology (brittle–elastic–ductile) has been applied to the seaward side of the Tonga and Kermadec trenches. This approach gives a better fit to the bathymetry on both trenches than assuming classical homogeneous plate models, and allows the interplate coupling forces and the lithospheric strength profile to be constrained. Our results show that, in order to fit the observed deflection of the lithosphere, a regional tensile horizontal force must act in both regions. This tensile force and its flexural effects are discussed in terms of slab pull as a main plate-driving mechanism. The predicted stress and yielding distributions partially match the outer-rise earthquake hypocentres within the subducting plate, and thus do not invalidate the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号