首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   6篇
  国内免费   1篇
测绘学   2篇
大气科学   12篇
地球物理   26篇
地质学   28篇
海洋学   8篇
天文学   4篇
自然地理   3篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   8篇
  2013年   6篇
  2012年   9篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
排序方式: 共有83条查询结果,搜索用时 78 毫秒
71.
72.
In an initial stage, the Sea of Marmara developed as a graben and, in due course, considerable volumes of sediments were deposited in this basin. Before 200 ka, a new fault (New Marmara Fault) cutting through the whole basin developed, which postdated large sub-marine land sliding in the western part of the basin. This mass movement created the Western Ridge. The initiation of this strike-slip fault indicates that the extensional stress regime was replaced by a new, shearing stress field. In the eastern part of the Marmara Basin, the New Marmara Fault consists of two branches. The northern one replaces the normal faulting at the bottom of the northeastern slope of the basin. As a result, this slope has been rejuvenated. The southern branch is located along the central axis of the basin, forming the major extension of the North Anatolian Fault Zone within the region. Two restraining bends were formed because of the counterclockwise rotation of that part of the Anatolian Block. This resulted the uplifting of the Eastern Ridge and the formation of the positive flower structure within the Tekirdag Basin. The establishment of the compressional regime around the Sea of Marmara also resulted in the northwest–southeast shortening of the initial Marmara Basin.  相似文献   
73.
74.
Izmir, the third largest city and one of the major economic centers in Turkey, has more than three million residents and one-half million buildings. The city, located in a seismically active region in western Anatolia, was a subject of the 1997 RADIUS (Risk Assessment Tools for Diagnosis of Urban Areas against Seismic Disaster) project. In this paper, the seismic hazard of Izmir is investigated through probabilistic seismic hazard assessment. First, the seismic setting of Izmir is presented. Considering the statistics of earthquakes that took place in the region during the period 1900–2005, a simple seismic hazard model is used to facilitate the assessment. To account for modeling uncertainties associated with the values of seismicity parameters, a logic tree procedure is employed in carrying out the seismic hazard computations. The resulting weighted average seismic hazard, presented in terms of peak ground acceleration and associated probability of exceedence, could be considered the “best estimate” of seismic hazard for Izmir. Accordingly, for a return period of 475 years, for rock sites, a PGA value of 0.34 g is calculated. This PGA hazard estimate is close to the current code-recommended design acceleration level for Izmir.  相似文献   
75.

Background  

The speciation of dissolved sulfide in the water immediately surrounding deep-ocean hydrothermal vents is critical to chemoautotrophic organisms that are the primary producers of these ecosystems. The objective of this research was to identify the role of Zn and Fe for controlling the speciation of sulfide in the hydrothermal vent fields at the Eastern Lau Spreading Center (ELSC) in the southern Pacific Ocean. Compared to other well-studied hydrothermal systems in the Pacific, the ELSC is notable for unique ridge characteristics and gradients over short distances along the north-south ridge axis.  相似文献   
76.

This study presents near future (2020–2044) temperature and precipitation changes over the Antarctic Peninsula under the high-emission scenario (RCP8.5). We make use of historical and projected simulations from 19 global climate models (GCMs) participating in Coupled Model Intercomparison Project phase 5 (CMIP5). We compare and contrast GCMs projections with two groups of regional climate model simulations (RCMs): (1) high resolution (15-km) simulations performed with Polar-WRF model forced with bias-corrected NCAR-CESM1 (NC-CORR) over the Antarctic Peninsula, (2) medium resolution (50-km) simulations of KNMI-RACMO21P forced with EC-EARTH (EC) obtained from the CORDEX-Antarctica. A further comparison of historical simulations (1981–2005) with respect to ERA5 reanalysis is also included for circulation patterns and near-surface temperature climatology. In general, both RCM boundary conditions represent well the main circulation patterns of the historical period. Nonetheless, there are important differences in projections such as a notable deepening and weakening of the Amundsen Sea Low in EC and NC-CORR, respectively. Mean annual near-surface temperatures are projected to increase by about 0.5–1.5 \(^{\circ }\)C across the entire peninsula. Temperature increase is more substantial in autumn and winter (\(\sim \) 2 \(^{\circ }\)C). Following opposite circulation pattern changes, both EC and NC-CORR exhibit different warming rates, indicating a possible continuation of natural decadal variability. Although generally showing similar temperature changes, RCM projections show less warming and a smaller increase in melt days in the Larsen Ice Shelf compared to their respective driving fields. Regarding precipitation, there is a broad agreement among the simulations, indicating an increase in mean annual precipitation (\(\sim \) 5 to 10%). However, RCMs show some notable differences over the Larsen Ice Shelf where total precipitation decreases (for RACMO) and shows a small increase in rain frequency. We conclude that it seems still difficult to get consistent projections from GCMs for the Antarctic Peninsula as depicted in both RCM boundary conditions. In addition, dominant and common changes from the boundary conditions are largely evident in the RCM simulations. We argue that added value of RCM projections is driven by processes shaped by finer local details and different physics schemes that are introduced by RCMs, particularly over the Larsen Ice Shelf.

  相似文献   
77.
This study examines the projections of hydroclimatic regimes and extremes over Andean basins in central Chile (~ 30–40° S) under a low and high emission scenarios (RCP2.6 and RCP8.5, respectively). A gridded daily precipitation and temperature dataset based on observations is used to drive and validate the VIC macro-scale hydrological model in the region of interest. Historical and future simulations from 19 climate models participating in CMIP5 have been adjusted with the observational dataset and then used to make hydrological projections. By the end of the century, there is a large difference between the scenarios, with projected warming of ~ + 1.2 °C (RCP2.6), ~ +?3.5 °C (RCP8.5) and drying of ~ ? 3% (RCP2.6), ~ ? 30% (RCP8.5). Following the strong drying and warming projected in this region under the RCP8.5 scenario, the VIC model simulates decreases in annual runoff of about 40% by the end of the century. Such strong regional effect of climate change may have large implications for the water resources of this region. Even under the low emission scenario, the Andes snowpack is projected to decrease by 35–45% by mid-century. In more snowmelt-dominated areas, the projected hydrological changes under RCP8.5 go together with more loss in the snowpack (75–85%) and a temporal shift in the center timing of runoff to earlier dates (up to 5 weeks by the end of the century). The severity and frequency of extreme hydroclimatic events are also projected to increase in the future. The occurrence of extended droughts, such as the recently experienced mega-drought (2010–2015), increases from one to up to five events per 100 years under RCP8.5. Concurrently, probability density function of 3-day peak runoff indicates an increase in the frequency of flood events. The estimated return periods of 3-day peak runoff events depict more drastic changes and increase in the flood risk as higher recurrence intervals are considered by mid-century under RCP2.6 and RCP8.5, and by the end of the century under RCP8.5.  相似文献   
78.
In this study, human-induced climate change over the Eastern Mediterranean–Black Sea region has been analyzed for the twenty-first century by performing regional climate model simulations forced with large-scale fields from three different global circulation models (GCMs). Climate projections have been produced with Special Report on Emissions Scenarios A2, A1FI and B1 scenarios, which provide greater diversity in climate information for future period. The gradual increases for temperature are widely apparent during the twenty-first century for each scenario simulation, but ECHAM5-driven simulation generally has a weaker signal for all seasons compared to CCSM3 simulations except for the Fertile Crescent. The contrast in future temperature change between the winter and summer seasons is very strong for CCSM3-A2-driven and HadCM3-A2-driven simulations over Carpathians and Balkans, 4–5 °C. In addition, winter runoff over mountainous region of Turkey, which feeds many river systems including the Euphrates and Tigris, increases in second half of the century since the snowmelt process accelerates where the elevation is higher than 1,500 m. Moreover, analysis of daily temperature outputs reveals that the gradual decrease in daily minimum temperature variability for January during the twenty-first century is apparent over Carpathians and Balkans. Analysis of daily precipitation extremes shows that positive trend is clear during the last two decades of the twenty-first century over Carpathians for both CCSM3-driven and ECHAM5-driven simulations. Multiple-GCM driven regional climate simulations contribute to the quantification of the range of climate change over a region by performing detailed comparisons between the simulations.  相似文献   
79.
Sediments of Lake Van, Turkey, preserve one of the most complete records of continental climate change in the Near East since the Middle Pleistocene. We used seismic reflection profiles to infer past changes in lake level and discuss potential causes related to changes in climate, volcanism, and regional tectonics since the formation of the lake ca. 600 ka ago. Lake Van’s water level ranged by as much as 600 m during the past ~600 ka. Five major lowstands occurred, at ~600, ~365–340, ~290–230, ~150–130 and ~30–14 ka. During Stage A, between about 600 and 230 ka, lake level changed dramatically, by hundreds of meters, but phases of low and high stands were separated by long time intervals. Changes in the lake level were more frequent during the past ~230 ka, but less dramatic, on the order of a few tens of meters. We identified period B1 as a time of stepwise transgressions between ~230 and 150 ka, followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise during period B2, until ~30 ka. During the past ~30 ka, a regression and a final transgression occurred, each lasting about 15 ka. The major lowstand periods in Lake Van occurred during glacial periods, suggesting climatic control on water level changes (i.e. greatly reduced precipitation led to lower lake levels). Although climate forcing was the dominant cause for dramatic water level changes in Lake Van, volcanic and tectonic forcing factors may have contributed as well. For instance, the number of distinct tephra layers, some several meters thick, increases dramatically in the uppermost ~100 m of the sediment record (i.e. the past ~230 ka), an interval that coincides largely with low-magnitude lake level fluctuations. Tectonic activity, highlighted by extensional and/or compressional faults across the basin margins, probably also affected the lake level of Lake Van in the past.  相似文献   
80.
On August 19, 2020, at 13:18—UTC, a meteor event ended as a meteorite shower in Santa Filomena, a city in the Pernambuco State, northeast Brazil. The heliocentric orbital parameters resulting from images by cameras of the weather broadcasting system were semimajor axis a = 2.1 ± 0.1 au, eccentricity e = 0.55 ± 0.03, and inclination i = 0.15o ± 0.05. The data identified the body as an Apollo object, an Earth-crossing object with a pericenter interior to the Earth's orbit. The chemical, mineralogical, and petrological evaluations, as well as the physical analysis, followed several traditional techniques. The meteorite was identified as a H5-6 S4 W0 ordinary chondrite genomict breccia. The large amount of metal in the meteorite made a metallographic evaluation based on the opaque phases possible. The monocrystalline kamacite crystals suggest a higher petrological type and the distorted Neumann lines imply at least two different shock events. The absence of the plessite phase shows that the meteorite did not reach the highest shock levels S5 and S6. The well-defined polycrystalline taenite is indicative of petrologic types 4 and 5 due to the conserved internal tetrataenite rim at the boundaries. The presence of polycrystalline taenites and the characteristics of the Agrell Effect suggest that the Santa Filomena meteorite did not reheat above 700°C. The absence of martensite confirms reheating temperatures <800°C and a slow cooling rate. The Ni contents and sizes of the zoned taenite particles indicate a slow cooling rate ranging from 1 to 10 K Myr−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号