首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   546篇
  免费   21篇
  国内免费   9篇
测绘学   14篇
大气科学   35篇
地球物理   133篇
地质学   189篇
海洋学   24篇
天文学   128篇
综合类   1篇
自然地理   52篇
  2022年   2篇
  2021年   12篇
  2020年   12篇
  2019年   13篇
  2018年   17篇
  2017年   10篇
  2016年   21篇
  2015年   15篇
  2014年   13篇
  2013年   29篇
  2012年   27篇
  2011年   23篇
  2010年   21篇
  2009年   25篇
  2008年   28篇
  2007年   15篇
  2006年   23篇
  2005年   16篇
  2004年   12篇
  2003年   16篇
  2002年   20篇
  2001年   10篇
  2000年   20篇
  1999年   7篇
  1998年   11篇
  1997年   10篇
  1996年   12篇
  1995年   10篇
  1994年   10篇
  1993年   13篇
  1992年   12篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   12篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1978年   6篇
  1977年   4篇
  1976年   6篇
  1975年   5篇
  1970年   2篇
  1969年   2篇
排序方式: 共有576条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
85.
86.
87.
Instability of exogenous lava lobes during intense rainfall   总被引:1,自引:1,他引:0  
On many volcanoes, there is evidence of a relationship between dome collapse and periods of high precipitation. We propose a mechanism for this relationship and investigate the conditions that optimize failure by this process. Observations of elongate lobes that evolve through exogenous growth of lava domes reveal that they commonly develop tensile fractures perpendicular to the direction of motion. These cracks can increase in depth by localized cooling and volumetric contraction. During periods of high rainfall, water can fill these cracks, and the increase in fluid pressure on the base of the lobes and within the crack can trigger the collapse of the hot exogenous lava domes. Using limit-equilibrium analysis, it is possible to calculate the water and vapor forces acting on the rear and base of the potentially unstable part of the lobe. The model presented is rectangular in cross-section, with material properties representative of andesitic dome rocks. Vapor pressures at the base of cracks are sealed by the penetrating rainfall, which forms a saturated cap within the lobe. This leads to an increase in fluid pressurization both through the underlying gas pressure and the downslope component of the liquid water cap. Fluid pressurization increases as the penetration depth increases. This rainfall penetration depth is dependent on the thermal properties of the rocks, antecedent temperature, lobe geometry, and the intensity and duration of precipitation. Dominant parameters influencing the stability of the lobe are principally lobe thickness, duration and intensity of rainfall, and antecedent lobe temperature. Our modeling reveals that thicker lobes are intrinsically more unstable due to the amplification of downslope forces in comparison to cohesive strength. The increase in the duration and intensity of rainfall events also increases the potential for collapse, as it leads to deeper liquid penetration. Deeper penetration depths are also achieved through lower antecedent temperatures since less fluid is lost through vaporization. Thus, the potential for rain-triggered collapse increases with time from emplacement.Editorial responsibility: D. Dingwell  相似文献   
88.
Geospatially Enabled Scientific Workflows offer a promising toolset to help researchers in the earth observation domain with many aspects of the scientific process. One such aspect is that of access to distributed earth observation data and computing resources. Earth observation research often utilizes large datasets requiring extensive CPU and memory resources in their processing. These resource intensive processes can be chained; the sequence of processes (and their provenance) makes up a scientific workflow. Despite the exponential growth in capacity of desktop computers, their resources are often insufficient for the scientific workflow processing tasks at hand. By integrating distributed computing capabilities into a geospatially enabled scientific workflow environment, it is possible to provide researchers with a mechanism to overcome the limitations of the desktop computer. Most of the effort on extending scientific workflows with distributed computing capabilities has focused on the web services approach, as exemplified by the OGC's Web Processing Service and by GRID computing. The approach to leveraging distributed computing resources described in this article uses instead remote objects via RPyC and the dynamic properties of the Python programming language. The Vistrails environment has been extended to allow for geospatial processing through the EO4Vistrails package ( http://code.google.com/p/eo4vistrails/ ). In order to allow these geospatial processes to be seamlessly executed on distributed resources such as cloud computing nodes, the Vistrails environment has been extended with both multi‐tasking capabilities and distributed processing capabilities. The multi‐tasking capabilities are required in order to allow Vistrails to run side‐by‐side processes, a capability it does not currently have. The distributed processing capabilities are achieved through the use of remote objects and mobile code through RPyC.  相似文献   
89.
Combining policies to remove carbon dioxide (CO2) from the atmosphere with policies to reduce emissions could decrease CO2 concentrations faster than possible via natural processes. We model the optimal selection of a dynamic portfolio of abatement, research and development (R&D), and negative emission policies under an exogenous CO2 constraint and with stochastic technological change. We find that near-term abatement is not sensitive to the availability of R&D policies, but the anticipated availability of negative emission strategies can reduce the near-term abatement optimally undertaken to meet 2°C temperature limits. Further, planning to deploy negative emission technologies shifts optimal R&D funding from ??carbon-free?? technologies into ??emission intensity?? technologies. Making negative emission strategies available enables an 80% reduction in the cost of keeping year 2100 CO2 concentrations near their current level. However, negative emission strategies are less important if the possibility of tipping points rules out using late-century net negative emissions to temporarily overshoot the CO2 constraint earlier in the century.  相似文献   
90.
The non-CO2 climate impact of aviation (NOx and contrails) is assessed and emissions weighting factors (EWFs) i.e., the factor by which aviation CO2 emissions should be multiplied to get the CO2-equivalent emissions for annual fleet average conditions are estimated. The EWFs are estimated using two economic metrics. One is based on the relative damage cost between non-CO2 forcers and CO2. The other is based on the cost-effective valuation between the non-CO2 forcers and CO2 given an upper ceiling on the global annual average surface temperature (set at 2?K above pre-industrial levels). We also estimate EWFs using three physical metrics, Global Warming Potential (GWP), Global Temperature change Potential (GTP) and Sustained GTP (SGTP) and compare our results with the economics based metrics. Given best estimates on the forcing contributions from CO2, contrails and NOx from aviation and by using a discount rate of 3%/year, the RDC based metric gives an EWF equal to 1.4 (slightly higher than EWFs based on GWP and SGTP using a 100?year time horizon). EWF using the cost-effective approach depends on the time that remains before stabilization occurs. It is roughly equal to unity until a few years before the temperature reaches its ceiling, and approximately 2 when stabilization has taken place. EWFs based on GTP resemble those based on CETO when the time left to when stabilization occurs is sufficiently large. Once stabilization has occurred CETO values resemble RDC based values. If aviation-induced cirrus clouds are included, uncertainties increase and the EWFs for GWP, SGTP and RDC based metrics end up in the range 1.3–2.9, while EWFs for GTP and CETO remain close to unity in the near term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号