首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   5篇
  国内免费   3篇
测绘学   3篇
大气科学   13篇
地球物理   33篇
地质学   62篇
海洋学   21篇
天文学   6篇
自然地理   2篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   5篇
  2011年   13篇
  2010年   4篇
  2009年   10篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   12篇
  2004年   3篇
  2003年   3篇
  2002年   10篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   3篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1975年   3篇
  1974年   3篇
排序方式: 共有140条查询结果,搜索用时 375 毫秒
101.
Melting relations of primitive peridotite were studied up to 25 GPa. The change of the liquidus phase from olivine to majorite occurs at 16 GPa. We confirmed the density crossover of the FeO-rich peridotite melt and the equilibrium olivine (Fo90) at 7 GPa. Sinking of equilibrium olivine (Fo95) in the primitive peridotite melt was observed up to 10 GPa. The compression curves of FeO-rich peridotitic and komatiite melts reported in this and earlier work suggest that the density crossover in the Earth's mantle will be located at 11–12 GPa at 2000°C, consistent with an previous estimation by C.B. Agee and D. Walker.

The density crossover can play a key role in the Moon and the terrestrial planets, such as the Earth, Venus and Mars. Majorite and some fraction of melt could have separated from the ascending diapir and sunk downwards at the depths below the density crossover. This process could have produced a garnet-rich transition zone in the Earth's mantle. The density crossover may exist in the FeO-rich lunar mantle at around the center of the Moon. The density crossover which exists at the depth of 600 km in the Martian mantle plays a key role in producing a fractionated mantle, which is the source the parent magmas of the SNC meteorites.  相似文献   

102.
An analysis of the textures of pallasites has been made using data concerning the kinetic and rheological properties of silicates and metals. Pallasites containing rounded olivines (e.g., the Springwater and Brehnam pallasites) have been heated to above the solidus temperature of the metallic iron phases, ~ 1270 K. The rounded olivines of grain size 0.5–1.0 cm observed in the Springwater pallasites were formed between 1270 and 1370 K. On the other hand, those of grain size 0.5–1.0 mm as found in the Brehnam pallasites may have been heated to above 1370 K; however, the duration of heating at such high temperatures must have been less than 5 × 103 y. Pallasites containing angular olivines with microscopically rounded corners (e.g., the Eagle Station, Dora pallasites) have suffered shock events fracturing the olivine grains, which may correspond to collisions during the accretional stage of the parent body, and experienced successive annealing during cooling from a temperature between 1150 and 1270 K.  相似文献   
103.
104.
From measurements in the atmospheric surface layer over a paddy field, the Kolmogorov constants for CO2 and longitudinal wind velocity were obtained. In this study, the nondimensional dissipation rate nc = (1–16 v )-1/2 for CO2 variance and = (1–16 v )-1/4 v for turbulent energy were used, assuming the equality of the local production term and the local dissipation term, and neglecting the divergence flux term in the budget equation. The value of the constant for CO2 was consistent with recent determinations for temperature and humidity. The constant for longitudinal wind velocity showed good agreement with other recent observations.  相似文献   
105.
The orthorhombic MgSiO3 perovskite has been synthesized with the aid of a double-stage split-sphere-type high-pressure apparatus at about 280 kbar and 1000°C. The unit cell dimensions are: a = 4.7754(3)Å, b = 4.9292(4)Å and c = 6.8969(5)Å with the probable space group Pbnm. Calculated density is 4.108 g cm?3. Crystal structure determination has been carried out by means of both the geometrical simulation (DLS) technique and the ordinary powder X-ray analysis. The results indicate that the MgSiO3 perovskite is closer to the ideal perovskite than ScAlO3 perovskite.  相似文献   
106.
High-pressure phase relations in ZnSiO3 and Zn2SiO4 were investigated at about 1000°C and in the pressure range of 100–500 kbar, using a double-staged split-sphere type of high-pressure apparatus.Clinopyroxene-type ZnSiO3 transforms directly into a polymorph with the ilmenite structure at 120 kbar. The hexagonal unit cell dimensions of the ZnSiO3 ilmenite are determined to be a = 4.746 ± 0.001 A?and c = 13.755 ± 0.002 A? under ambient conditions.The following reactions are also recognized at about 1000°C:
and:
The stabilities of silicate ilmenites, especially the absence of ilmenite of transition metal silicate composition, is discussed. It is pointed out that data on phase relations in zinc silicates may be informative for the consideration on those in magnesium silicates under very high pressures. It is suggested that the silicate ilmenite may be a major constituent in the lower mantle.  相似文献   
107.
Pressure effects on the lattice parameters of β- and γ-Mg2SiO4 have been measured at room temperature and at pressures up to 100 kbar using a multi-anvil high-pressure X-ray diffraction apparatus. The volume changes (ΔV/V0) at 90 kbar are 5.4 · 10?2 and 4.2 · 10?2 for β- and γ-Mg2SiO4, respectively. Isothermal bulk moduli at zero pressure have been calculated from least-square fits of the data to straight lines. They turn out to be 1.66 ± 0.4 and 2.13 ± 0.1 Mbar for β- and γ-Mg2SiO4, respectively. The α → γ transition obeys Wang's linear Vφ?ρ relation but the αβ transition does not.  相似文献   
108.
Bulk transfer coefficients were evaluated from eddy correlation flux measurements on a fixed pier during onshore winds. The mean values are C D = 1.69 × 10-3, C H = 2.58 × 10-3 and C E = 1.51 × 10-3. The drag coefficient, C D, gradually increases with wind speed but C H and C E are independent of wind speed. According to theory and empirical formulas based on experimental results over flat grassland, the transfer coefficients should gradually increase with increasing instability. This is confirmed experimentally in the stable region in our case. However, the drag coefficient appears to decrease with increasing instability, which is against the theoretical result. A stability dependence is not clearly observed for C H or C E.  相似文献   
109.
We have determined phase relations in the Fe-O and Fe-O-S systems in the range of 15-21 GPa and 1825-2300 °C. Below the liquidus temperatures, solid FeO and metallic liquids are observed in both the Fe-O and the Fe-O-S systems. An immiscible two-liquid region exists in the Fe-O binary system in the pressure range investigated, and the immiscibility gap between Fe-rich metallic liquid and FeO-rich ionic liquid does not greatly change with either pressure or temperature. On the other hand, an immiscible two-liquid region in the Fe-O-S ternary system narrows significantly with increasing pressure at constant temperature and vice versa, and it almost disappears at 21 GPa, and 2300 °C. Immiscible two-liquid regions are thus not expected to exist in the Fe-O-S system in the Earth's core, suggesting that both oxygen and sulfur can be incorporated into the core. Our results are consistent with a geochemical model for the core containing 5.8 wt.% oxygen and 1.9 wt.% sulfur as proposed by McDonough and Sun [McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253].  相似文献   
110.
Weathered and fresh samples of metamorphic rocks from Sri Lanka were collected from various localities and analysed for major elements by XRF method (RIGAKU, KG-X System, Japan). The content of water was determined by the ignition method.

The XRF results, obtained from these samples form the basis of a new index of chemical weathering, particularly for Sri Lanka, which is named the Silica-Titania Index, and is calculated as follows: Silica-Titania Index = {(SiO2/TiO2)/[(SiO2/TiO2) × (Al2O3/TiO 2) × (SiO2/Al2O3)]} × 100(molecular proportions).

The index can be used to determine the degree of weathering in chemically weathered silicate rocks of other countries in tropical regions. A triangular diagram plots the position of this index. The point load strengths of fresh rocksand weathered rocks with different degrees of weathering were correlated with the values of this new chemical index. The relative variation in strengths of fresh rocks and weathered rocks clearly indicates its suitability and usefulness for engineering geologists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号