首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   6篇
测绘学   3篇
大气科学   25篇
地球物理   72篇
地质学   128篇
海洋学   28篇
天文学   19篇
自然地理   38篇
  2022年   2篇
  2021年   8篇
  2020年   6篇
  2019年   5篇
  2018年   8篇
  2017年   3篇
  2016年   11篇
  2015年   5篇
  2014年   4篇
  2013年   16篇
  2012年   9篇
  2011年   12篇
  2010年   9篇
  2009年   12篇
  2008年   21篇
  2007年   13篇
  2006年   14篇
  2005年   7篇
  2004年   15篇
  2003年   6篇
  2002年   11篇
  2001年   11篇
  2000年   10篇
  1999年   4篇
  1998年   9篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   6篇
  1983年   6篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有313条查询结果,搜索用时 500 毫秒
151.
152.
Monte Carlo simulations are used to model the July 14, 2005 UVIS stellar occultation observations of the water vapor plumes on Enceladus. These simulations indicate that the observations can be best fit if the water molecules ejected along the Tiger Stripes in the South Polar region of Enceladus have a vertical surface velocity of 300-500 m/s at the surface. The high surface velocity suggests that the plumes on Enceladus originate from some depth beneath the surface. The total escape rate of water molecules is 4-6×1027 s−1, or 120-180 kg/s, consistent with previous works, and more than 100 times the estimated mass escape rate for ice particles. The average deposition rate in the South Polar region is on the order of 1011 cm−2 s−1, yielding a resurfacing rate as high as 3×10−4 cm/yr. The globally averaged deposition rate of water molecules is about one order of magnitude lower.  相似文献   
153.
Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine‐grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9–7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large‐scale sliding on the continental margin off Norway (the Storegga Tsunami). During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea‐surface summer temperatures, possibly with year‐round sea‐ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea‐surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4–9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0.4–0.8 kyr BP. Changes in the fjord hydrology through the past 11.3 kyr show a close correspondence, both in amplitude and timing of events, recorded in cores from the Norwegian Sea region and the North Atlantic. These data suggest a close relationship between fjord environments and variability in large‐scale oceanic circulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
154.
Biogeomorphology has been expanding as a discipline, due to increased recognition of the role that biology can play in geomorphic processes, as well as due to our increasing capacity to measure and quantify feedback between biological and geomorphological systems. Here, we provide an overview of the growth and status of biogeomorphology. This overview also provides the context for introducing this special issue on biogeomorphology, and specifically examines the thematic domains of biogeomorphological research, methods used, open questions and conundrums, problems encountered, future research directions, and practical applications in management and policy (e.g. nature-based solutions). We find that whilst biogeomorphological studies have a long history, there remain many new and surprising biogeomorphic processes and feedbacks that are only now being identified and quantified. Based on the current state of knowledge, we suggest that linking ecological and geomorphic processes across different spatio-temporal scales emerges as the main research challenge in biogeomorphology, as well as the translation of biogeomorphic knowledge into management approaches to environmental systems. We recommend that future biogeomorphic studies should help to contextualize environmental feedbacks by including the spatio-temporal scales relevant to the organism(s) under investigation, using knowledge of their ecology and size (or metabolic rate). Furthermore, in order to sufficiently understand the ‘engineering’ capacity of organisms, we recommend studying at least the time period bounded by two disturbance events, and recommend to also investigate the geomorphic work done during disturbance events, in order to put estimates of engineering capacity of biota into a wider perspective. Finally, the future seems bright, as increasingly inter-disciplinary and longer-term monitoring are coming to fruition, and we can expect important advances in process understanding across scales and better-informed modelling efforts. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
155.
Edelvang, Karen; Larsen, Michael; Pejrup, Morten: Tidal Variation in Field Settling Velocities of Suspended Sediment in a Tidal Channel. Geografisk Tidsskrift 92:116–121. Copenhagen 1992.

Particles of silt and clay may form large, low density floes when suspended in salt water. The sediment floes have settling velocities much higher than the single small particles constituting them and therefore, the flocculation process may strongly influence the transport of cohesive sediment in estuarine environments. will be described in this paper, the field settling velocities of suspended sediment were investigated in a large tidal channel with tidal current velocities up to 1.3 m/s and depths of about 10 m. The analyses of suspended sediment were made on both bottom and surface samples. For the bottom samples, equivalent median fall diameters in the range 26–98 μm were measured. For surface samples, the range was 15–40 μm. During most of the tidal period, the occurrence of much larger settling diameters near the bottom was due to the suspension of individual sand and silt particles. For the investigated periods, high-tide was the only possible time to observe flocculation influencing the vertical distribution of finegrained sediment in the water column.  相似文献   
156.
Estimation of young water fractions (Fyw), defined as the fraction of water in a stream younger than approximately 2–3 months, provides key information for water resource management in catchments where runoff is dominated by snowmelt. Knowing the average dependence of summer flow on winter precipitation is an essential context for comparing regional drought severity and provides the hydrological template for downstream water users and ecosystems. However, Fyw estimation based on seasonal signals of stable isotopes of oxygen and hydrogen has not yet explicitly addressed how to parsimoniously include the seasonal shift of water input from snow. Using experimental data from three high-elevation, Alpine catchments (one dominated by glacier and two by snow), we propose a framework to explicitly include the delays induced by snow storage into estimates of Fyw. Scrutinizing the key methodological choices when estimating Fyw from isotope data, we find that the methods used to construct precipitation input signals from sparse isotope samples can significantly impact Fyw. Given this sensitivity, our revised procedure estimates a distribution of Fyw values that incorporates a wide range of possible methodological choices and their uncertainties; it furthermore compares the commonly used amplitude ratio approach to a direct convolution approach, which circumvents the assumption that the isotopic signals have a sine curve shape, an assumption that is generally violated in snow-dominated environments. Our new estimates confirm that high-elevation Alpine catchments have low Fyw values, spanning from 8 to 11%. Such low values have previously been interpreted as the impact of seasonal snow storage alone, but our comparison of different Fyw estimation methods suggests that these low Fyw values result from a combination of both snow cover effects and longer storage in the subsurface. In contrast, in the highest elevation, glacier dominated catchment, Fyw is 3–4 times greater compared to the other two catchments, due to the lower storage and faster drainage processes. A future challenge, capturing spatio-temporal snowmelt isotope signals during winter baseflow and the snowmelt period, remains to improve constraints on the Fyw estimation technique.  相似文献   
157.
158.
159.
Using fluorescence spectroscopy and parallel factor analysis (PARAFAC) we characterized and modeled the fluorescence properties of dissolved organic matter (DOM) in samples from the Penobscot River, Androscoggin River, Penobscot Bay, and the Gulf of Maine (GoM). We analyzed excitation-emission matrices (EEMs) using an existing PARAFAC model (Cory and McKnight, 2005) and created a system-specific model with seven components (GoM PARAFAC). The GoM PARAFAC model contained six components similar to those in other PARAFAC models and one unique component with a spectrum similar to a residual found using the Cory and McKnight (2005) model. The unique component was abundant in samples from the Androscoggin River immediately downstream of a pulp mill effluent release site. The detection of a PARAFAC component associated with an anthropogenic source of DOM, such as pulp mill effluent, demonstrates the importance for rigorously analyzing PARAFAC residuals and developing system-specific models.  相似文献   
160.
Quantitative regional assessments of streambed sedimentation and its likely causes are hampered because field investigations typically lack the requisite sample size, measurements, or precision for sound geomorphic and statistical interpretation. We adapted an index of relative bed stability (RBS) for data calculated from a national stream survey field protocol to enable general evaluation of bed stability and anthropogenic sedimentation in synoptic ecological surveys. RBS is the ratio of bed surface geometric mean particle diameter (Dgm) divided by estimated critical diameter (Dcbf) at bankfull flow, based on a modified Shield's criterion for incipient motion. Application of RBS to adequately depict bed stability in complex natural streams, however, has been limited because typical calculations of RBS do not explicitly account for reductions in bed shear stress that result from channel form roughness. We modified the index (RBS) to incorporate the reduction in bed shear stress available for sediment transport that results from the hydraulic resistance of large wood and longitudinal irregularities in channel dimensions (“form roughness”). Based on dimensional analysis, we derived an adjustment to bankfull shear stress by multiplying the bankfull hydraulic radius (Rbf) by the one-third power of the ratio of particle-derived resistance to total hydraulic resistance (Cp/Ct)1/3, where both resistances are empirically based calculations. We computed Cp using a Keulegan equation relating resistance to relative submergence of bed particles. We then derived an empirical equation to predict reach-scale hydraulic resistance Ct from thalweg mean depth, thalweg mean residual depth, and large wood volume based on field dye transit studies, in which total hydraulic resistance Ct was measured over a wide range of natural stream channel complexity, including manipulation of large wood volumes. We tested our estimates of Ct and RBS by applying them to data from a summer low flow probability sample of 104 wadeable stream reaches in the Coastal Ecoregion of Oregon and Washington, USA. Stream discharges calculated using these Ct estimates compared favorably with velocity–area measurements of discharge during summer low flow, and with the range of 1 to 2-year recurrence floods (scaled by drainage area) at U.S.Geological Survey gauged sites in the same region. Log [RBS] ranged from − 4.2 to + 0.98 in the survey region. Dgm ranged from silt to boulders, while estimated bankfull critical diameter, Dcbf, ranged from very fine gravel to large boulders. The median value of Dcbf (adjusted for form roughness influences) averaged 40% (inter quartile range 28 to 59%) of the unadjusted estimate Dcbf. Log[RBS] was consistently negatively related to human disturbances likely to produce excess sediment inputs or hydrologic alteration. Log [RBS] ranged from − 1.9 to + 0.5 in the streams within the lower quartile of human disturbance in their basin and riparian areas and was substantially lower (− 4.2 to − 1.1) in streams within the upper quartile of human disturbance. The synoptic survey methods and designs we used appear adequate to evaluate regional patterns in bed stability and sedimentation and their general relationship to human disturbances. Although the RBS concept also shows promise for evaluating sediment and bed stability in individual streams, our approach is relatively coarse, so site-specific assessments using these rapid field methods might prudently be confined to identifying severe cases of sedimentation or channel alteration. Greater confidence to discern subtle differences in site-specific assessments could be gained by calculating RBS using more precise field measurements of channel slope, bed particle size and bankfull dimensions, and by refining our adjustments for energy loss from channel form roughness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号