首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   22篇
  国内免费   1篇
测绘学   5篇
大气科学   6篇
地球物理   50篇
地质学   111篇
海洋学   22篇
天文学   30篇
自然地理   13篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   7篇
  2018年   13篇
  2017年   9篇
  2016年   9篇
  2015年   11篇
  2014年   14篇
  2013年   21篇
  2012年   19篇
  2011年   10篇
  2010年   18篇
  2009年   14篇
  2008年   20篇
  2007年   7篇
  2006年   3篇
  2005年   12篇
  2004年   9篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有237条查询结果,搜索用时 15 毫秒
151.
This work focuses on well‐exposed Lower Triassic sedimentary rocks in the area of Torrey (south‐central Utah, USA). The studied Smithian 8 deposits record a large‐scale third‐order sea‐level cycle, which permits a detailed reconstruction of the evolution of depositional settings. During the middle Smithian, peritidal microbial limestones associated with a rather low‐diversity benthic fauna were deposited seaward of the tidal flat siliciclastic red beds. Associated with siliceous sponges, microbial limestones formed small m‐scale patch reefs. During the late middle to late Smithian interval, the sedimentary system is characterized by tidal flat dolostones of an interior platform, ooid‐bioclastic deposits of a tide‐dominated shoal complex, and mid‐shelf bioclastic limestones. Microbial deposits, corresponding to sparse stromatolites formed in the interior platform, are contemporaneous with a well‐diversified marine fauna living in a seaward shoal complex and mid‐shelf area. The nature and distribution of these Smithian microbial deposits are not related to any particular deleterious environmental condition, highlighting that observed patterns of biotic recovery after the end‐Permian mass extinction were directly influenced by depositional settings. Facies evolution and stratal stacking patterns allow us to identify large, medium and small‐scale, as well as elementary depositional sequences. Large‐ and medium‐scale sequences are consistent with sea‐level changes, whereas small‐scale and elementary sequences are better explained by autocyclic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
152.
Risk assessment of Tunguska-type airbursts   总被引:1,自引:1,他引:0  
The Tunguska airburst, which devastated a taiga forest over an area greater than 2,000 km2 in a remote region of Central Siberia in 1908, is a classic example of extraterrestrial encounter discussed in the asteroid/comet impact hazard and risk assessment literature (e.g. Longo 2007; Carusi et al. 2007). Although it is generally agreed that the cosmic body caused damage by bursting in the air rather than through direct impact on the Earth’s surface, the Tunguska event is often referred to as an impact event. To the best of our knowledge, no detailed studies have been performed to quantify the risk of a similar-sized event over a populated region. We propose here a straightforward probabilistic risk model for Tunguska-type events over the continental United States and use established risk metrics to determine the property (buildings and contents) and human losses. We find an annual average property loss of ~USD 200,000/year, a rate of ~0.3 fatalities/year and ~1.0 injuries/year ranging from a factor 3 below and to a factor 3 above the indicated values when a reasonable rate uncertainty for Tunguska-type events is taken into account. We then illustrate the case of an extreme event over the New York metropolitan area. While we estimate that this “nightmare” scenario would lead to ~USD 1.5 trillion of property loss, ~3.9 millions of fatalities and ~4.7 millions of injuries, such event is almost impossible (occurrence once every ~30 million years) and should only be considered as an illustrative example.  相似文献   
153.
The climates of the mid-Holocene (MH, 6,000 years ago) and the Last Glacial Maximum (LGM, 21,000 years ago) have been extensively documented and as such, have become targets for the evaluation of climate models for climate contexts very different from the present. In Part 1 of the present work, we have studied the MH and LGM simulations performed with the last two versions of the IPSL model: IPSL_CM4, run for the PMIP2/CMIP3 (Coupled Model Intercomparion Project) projects and IPSL_CM5A, run for the most recent PMIP3/CMIP5 projets. We have shown that not only are these models different in their simulations of the PI climate, but also in their simulations of the climatic anomalies for the MH and LGM. In the Part 2 of this paper, we first examine whether palaeo-data can help discriminate between the model performances. This is indeed the case for the African monsoon for the MH or for North America south of the Laurentide ice sheet, the South Atlantic or the southern Indian ocean for the LGM. For the LGM, off-line vegetation modelling appears to offer good opportunities to distinguish climate model results because glacial vegetation proves to be very sensitive to even small differences in LGM climate. For other cases such as the LGM North Atlantic or the LGM equatorial Pacific, the large uncertainty on the SST reconstructions, prevents model discrimination. We have examined the use of other proxy-data for model evaluation, which has become possible with the inclusion of the biogeochemistry morel PISCES in the IPSL_CM5A model. We show a broad agreement of the LGM–PI export production changes with reconstructions. These changes are related to the mixed layer depth in most regions and to sea-ice variations in the high latitudes. We have also modelled foraminifer abundances with the FORAMCLIM model and shown that the changes in foraminifer abundance in the equatorial Pacific are mainly forced by changes in SSTs, hence confirming the SST-foraminifer abundance relationship. Yet, this is not the case in all regions in the North Atlantic, where food availability can have a strong impact of foraminifer abundances. Further work will be needed to exhaustively examine the role of factors other than climate in piloting changes in palaeo-indicators.  相似文献   
154.
Boom Clay is extensively studied as a potential candidate to host underground nuclear waste disposal in Belgium. To guarantee the safety of such a disposal, the mechanical behaviour of the clay during gallery excavation must be properly predicted. In that purpose, a hollow cylinder experiment on Boom Clay has been designed to reproduce, in a small-scale test, the Excavation Damaged Zone (EDZ) as experienced during the excavation of a disposal gallery in the underground. In this article, the focus is made on the hydro-mechanical constitutive interpretation of the displacement (experimentally obtained by medium resolution X-ray tomography scanning). The coupled hydro-mechanical response of Boom Clay in this experiment is addressed through finite element computations with a constitutive model including strain hardening/softening, elastic and plastic cross-anisotropy and a regularization method for the modelling of strain localization processes. The obtained results evidence the directional dependency of the mechanical response of the clay. The softening behaviour induces transient strain localization processes, addressed through a hydro-mechanical second grade model. The shape of the obtained damaged zone is clearly affected by the anisotropy of the materials, evidencing an eye-shaped EDZ. The modelling results agree with experiments not only qualitatively (in terms of the shape of the induced damaged zone), but also quantitatively (for the obtained displacement in three particular radial directions).  相似文献   
155.
Dynamic risk processes, which involve interactions at the hazard and risk levels, have yet to be clearly understood and properly integrated into probabilistic risk assessment. While much attention has been given to this aspect lately, most studies remain limited to a small number of site-specific multi-risk scenarios. We present a generic probabilistic framework based on the sequential Monte Carlo Method to implement coinciding events and triggered chains of events (using a variant of a Markov chain), as well as time-variant vulnerability and exposure. We consider generic perils based on analogies with real ones, natural and man-made. Each simulated time series corresponds to one risk scenario, and the analysis of multiple time series allows for the probabilistic assessment of losses and for the recognition of more or less probable risk paths, including extremes or low-probability–high-consequences chains of events. We find that extreme events can be captured by adding more knowledge on potential interaction processes using in a brick-by-brick approach. We introduce the concept of risk migration matrix to evaluate how multi-risk participates to the emergence of extremes, and we show that risk migration (i.e., clustering of losses) and risk amplification (i.e., loss amplification at higher losses) are the two main causes for their occurrence.  相似文献   
156.
In this study, the accuracy and the precision corresponding to Li isotopic measurements of low level samples such as marine and coastal carbonates are estimated. To this end, a total of fifty‐four analyses of a Li‐pure reference material (Li7‐N) at concentrations ranging from 1 to 6 ng ml?1 were first performed. The average δ7Li values obtained for solutions with and without chemical purification were 30.3 ± 0.4‰ (2s,= 19) and 30.2 ± 0.4‰ (2s,= 36), respectively. These results show that the chosen Li chemical extraction and purification procedure did not induce any significant isotope bias. Two available carbonate reference materials (JCt‐1 and JCp‐1) were analysed, yielding mean δ7Li values of 18.0 ± 0.27‰ (2s,= 6) and 18.8 ± 1.8‰ (2s,= 9), respectively. Small powder aliquots (< 15 mg) of JCp‐1 displayed significant isotope heterogeneity and we therefore advise favouring JCt‐1 for interlaboratory comparisons. The second part of this study concerns the determination of δ7Li value for biogenic carbonate samples. We performed a total of twenty‐nine analyses of seven different tropical coral species grown under controlled and similar conditions (24.0 ± 0.1 °C). Our sample treatment prior to Li extraction involved removal of organic matter before complete dissolution in diluted HCl. Our results show (a) a constant δ7Li within each skeleton and between the different species (δ7Li = 17.3 ± 0.7‰), and (b) a Li isotope fractionation of ?2‰ compared with inorganic aragonite grown under similar conditions. Comparison with literature data suggests a significant difference between samples living in aquaria and those grown in natural conditions. Finally, we investigate ancient (fossil) carbonate material and foraminifera extracted from marine sedimentary records. Different leaching procedures were tested using various HCl molarities. Results indicate that carbonate preferential dissolution must be carried out at an acid molarity < 0.18 mol l?1. Possible contamination from silicate minerals can be verified using the Al/Ca ratio, but the threshold value strongly depends on the carbonate δ7Li value. When the silicate/carbonate ratio is high in the sediment sample (typically > 2), contamination from silicates cannot be avoided, even at low HCl molarity (? 0.1 mol l?1). Finally, bulk carbonate and foraminifera extracted from the same core sample exhibited significant discrepancies: δ7Li values of foraminifera were more reproducible but were significantly lower. They were also associated with lower Sr/Ca and higher Mn/Ca ratios, suggesting a higher sensitivity to diagenesis, although specific vital effects cannot be fully ruled out.  相似文献   
157.
158.
The Lower Triassic Mineral Mountains area (Utah, USA) preserves diversified Smithian and Spathian reefs and bioaccumulations that contain fenestral‐microbialites and various benthic and pelagic organisms. Ecological and environmental changes during the Early Triassic are commonly assumed to be associated with numerous perturbations (productivity changes, acidifica‐tion, redox changes, hypercapnia, eustatism and temperature changes) post‐dating the Permian–Triassic mass extinction. New data acquired in the Mineral Mountains sediments provide evidence to decipher the relationships between depositional environments and the growth and distribution of microbial structures. These data also help to understand better the controlling factors acting upon sedimentation and community turnovers through the Smithian–early Spathian. The studied section records a large‐scale depositional sequence during the Dienerian(?)–Spathian interval. During the transgression, depositional environments evolved from a coastal bay with continental deposits to intertidal fenestral–microbial limestones, shallow subtidal marine sponge–microbial reefs to deep subtidal mud‐dominated limestones. Storm‐induced deposits, microbialite–sponge reefs and shallow subtidal deposits indicate the regression. Three microbialite associations occur in ascending order: (i) a red beds microbialite association deposited in low‐energy hypersaline supratidal conditions where microbialites consist of microbial mats and poorly preserved microbially induced sedimentary structure; (ii) a Smithian microbialite association formed in moderate to high‐energy, tidal conditions where microbialites include stromatolites and associated carbonate grains (oncoids, ooids and peloids); and (iii) a Spathian microbialite association developed in low‐energy offshore conditions that is preserved as multiple decimetre thick isolated domes and coalescent domes. Data indicate that the morphologies of the three microbialite associations are controlled primarily by accommodation, hydrodynamics, bathymetry and grain supply. This study suggests that microbial constructions are controlled by changes between trapping and binding versus precipitation processes in variable hydrodynamic conditions. Due to the presence of numerous metazoans associated with microbialites throughout the Smithian increase in accommodation and Spathian decrease in accommodation, the commonly assumed anachronistic character of the Early Triassic microbialites and the traditional view of prolonged deleterious conditions during the Early Triassic time interval is questioned.  相似文献   
159.
160.
The steady velocity, perturbation pressure and perturbation magnetic field, driven by an isolated buoyant parcel of Gaussian shape in a rapidly rotating, unconfined, incompressible electrically conducting fluid in the presence of an imposed uniform magnetic field, are obtained by means of the Fourier transform in the limit of small Ekman number. Lorentz and inertial forces are neglected. The solution requires at most evaluation of a single integral and is found in closed form in some spatial regions. The solution has structure on two disparate scales: on the scale of the buoyant parcel and on the scale of the Taylor column, which is elongated in the direction of the rotation axis. The detailed structures of the flow and pressure depend linearly on the relative orientation of gravity and rotation, with the solution for arbitrary orientation being a linear combination of two limiting cases in which these vectors are colinear (polar case) and perpendicular (equatorial case). The perturbation magnetic field depends additionally on the relative orientation of the imposed magnetic field, and three limiting cases of interest are presented in which gravity and rotation are colinear (polar–toroidal case), gravity and imposed field are colinear (equatorial–radial case) and all three are mutually perpendicular (equatorial–toroidal case). Visualization and analysis of the velocity and perturbation magnetic field vectors are facilitated by dividing these vector fields into geostrophic and ageostrophic protions. In all cases, the geostrophic and ageostrophic portions have different structure on the Taylor-column scale. The buoyancy force is balanced by a pressure force in the polar case and by a flux of momentum in the equatorial case. The pressure force and momentum flux do not decay in strength with increasing axial distance. Far from the parcel, the axial mass flux varies as the inverse one-third power of distance from the parcel. The velocity has a single geostrophic vortex in the polar case and two vortices in the equatorial case. The perturbation magnetic field has two, four and one geostrophic vortices in the polar–toroidal, equatorial–radial and equatorial–toroidal cases, respectively. To facilitate comparison of the present results with numerical simulations carried out in a finite domain, a set of boundary conditions are developed, with may be applied at a finite distance from the parcel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号