首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27475篇
  免费   577篇
  国内免费   306篇
测绘学   678篇
大气科学   2159篇
地球物理   5974篇
地质学   9675篇
海洋学   2251篇
天文学   5669篇
综合类   43篇
自然地理   1909篇
  2020年   179篇
  2019年   166篇
  2018年   357篇
  2017年   323篇
  2016年   495篇
  2015年   364篇
  2014年   517篇
  2013年   1332篇
  2012年   595篇
  2011年   905篇
  2010年   747篇
  2009年   1036篇
  2008年   957篇
  2007年   913篇
  2006年   939篇
  2005年   800篇
  2004年   822篇
  2003年   784篇
  2002年   776篇
  2001年   645篇
  2000年   649篇
  1999年   613篇
  1998年   585篇
  1997年   587篇
  1996年   484篇
  1995年   482篇
  1994年   462篇
  1993年   437篇
  1992年   391篇
  1991年   354篇
  1990年   404篇
  1989年   320篇
  1988年   347篇
  1987年   394篇
  1986年   348篇
  1985年   504篇
  1984年   544篇
  1983年   556篇
  1982年   458篇
  1981年   450篇
  1980年   464篇
  1979年   390篇
  1978年   404篇
  1977年   365篇
  1976年   385篇
  1975年   347篇
  1974年   394篇
  1973年   384篇
  1972年   236篇
  1971年   190篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
11.
Abstract— It has now been about a decade since the first demonstrations that hypervelocity particles could be captured, partially intact, in aerogel collectors. But the initial promise of a bonanza of partially‐intact extraterrestrial particles, collected in space, has yet to materialize. One of the difficulties that investigators have encountered is that the location, extraction, handling and analysis of very small (10 μm and less) grains, which constitute the vast majority of the captured particles, is challenging and burdensome. Furthermore, current extraction techniques tend to be destructive over large areas of the collectors. Here we describe our efforts to alleviate some of these difficulties. We have learned how to rapidly and efficiently locate captured particles in aerogel collectors, using an automated microscopic scanning system originally developed for experimental nuclear astrophysics. We have learned how to precisely excavate small access tunnels and trenches using an automated micromanipulator and glass microneedles as tools. These excavations are only destructive to the collector in a very small area—this feature may be particularly important for excavations in the precious Stardust collectors. Using actuatable silicon microtweezers, we have learned how to extract and store “naked” particles—essentially free of aerogel—as small as 3 μm in size. We have also developed a technique for extracting particles, along with their terminal tracks, still embedded in small cubical aerogel blocks. We have developed a novel method for storing very small particles in etched nuclear tracks. We have applied these techniques to the extraction and storage of grains captured in aerogel collectors (Particle Impact Experiment, Orbital Debris Collector Experiment, Comet‐99) in low Earth orbit.  相似文献   
12.
IwrRODUcrlONStainlessstalhasbeenusedwidelyasbuildingrnateria1,especiallyasdecoratingrnate-rialinbuildings.Ordinarystainlesssteehasonlyonemonot0noussilverywhitCcolourwhichsomeimesdoesnotrnatchwithitSsurmundingenvironment.lnordert0improveitSdereratingperfonnaneeandexpanditsuse,muchresearchhasbeenconductedsincethe4O'st0trytoformabright,uniform,highcorrosi0nandwearresistantco1ourfilmonastainlesssteesurface.Duringtheeariystage,anirnmersionedhodwasused,i.e.inimrs-ingthestainlesssteelinahots0luti…  相似文献   
13.
14.
Measurement of variations in the radial velocities of stars due to the reflex orbital motion of the star around the planetary-system barycenter constitutes a powerful method of searching for substellar or planetary mass companions. After several years of patient data acquisition, radial-velocity searches for planetary systems around other stars are now beginning to bear fruit. In late 1995 and early 1996, three candidate systems were announced with Jovian-mass planets around solar-type stars. The current paradigm for low-mass star formation suggests that planetary systems should be able to form in the circumstellar disks surrounding young stellar objects. These newly discovered systems, and other discoveries which will soon follow them, will test critically our understanding of the processes of star- and planet-formation. We review the techniques used in these radial-velocity searches and their results to date. We then discuss planned improvements in the surveys, and the prospects for the next 20 years.  相似文献   
15.
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, uses its large X-ray beam line facility PANTER for testing X-ray astronomical instrumentation. A number of telescopes, gratings, filters, and detectors, e.g. for astronomical satellite missions like Exosat, ROSAT, Chandra (LETG), BeppoSAX, SOHO (CDS), XMM-Newton, ABRIXAS, Swift (XRT), have been successfully calibrated in the soft X-ray energy range (< 15keV). Moreover, measurements with mirror test samples for new missions like ROSITA and XEUS have been carried out at PANTER. Here we report on an extension of the energy range, enabling calibrations of hard X-ray optics over the energy range 15–50 keV. Several future X-ray astronomy missions (e.g., Simbol-X, Constellation-X, XEUS) have been proposed, which make use of hard X-ray optics based on multilayer coatings. Such optics are currently being developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA. These optics have been tested at the PANTER facility with a broad energy band beam (up to 50 keV) using the XMM-Newton EPIC-pn flight spare CCD camera with its good intrinsic energy resolution, and also with monochromatic X-rays between C-K (0.277 keV) and Cu-Kα (8.04 keV). PACS: 95.55.Ka, 95.55.Aq, 41 50.+h, 07.85.Fv  相似文献   
16.
A remarkable number of pulsar wind nebulae (PWN) are coincident with EGRET γ-ray sources. X-ray and radio imaging studies of unidentified EGRET sources have resulted in the discovery of at least six new pulsar wind nebulae (PWN). Stationary PWN (SPWN) appear to be associated with steady EGRET sources with hard spectra, typical for γ-ray pulsars. Their toroidal morphologies can help determine the geometry of the pulsar which is useful for constraining models of pulsed γ-ray emission. Rapidly moving PWN (RPWN) with more cometary morphologies seem to be associated with variable EGRET sources in regions where the ambient medium is dense compared to what is typical for the ISM.  相似文献   
17.
18.
Parametric transduction offers valuable advantages for underwater acoustic communications. Perhaps the most significant benefit is the fact that high directivity is achieved by means of a physically small transmit transducer. This feature may, ultimately, be employed to permit long-range, low-frequency communication using a compact source. The high directivity is desirable to combat multipath propagation and to achieve data communications in water which is shallow by comparison with range. A real-time, high data-rate “model” differential phase shift keying (DPSK) communication system has been constructed and demonstrated. This system uses parametric transduction, with a 300-kHz primary frequency and a 50-kHz secondary frequency. Experimental results show that the system can be employed to combat multipath propagation in shallow water and can achieve high data-rate text and color image transmission at 10 and 20 kb s-1 for 2-DPSK and 4-DPSK, respectively, through a transmission bandwidth of 10 kHz. The “model” system was developed to confirm performance predictions for a future, operational long-range link employing a 50-kHz primary frequency and a 5-kHz secondary frequency  相似文献   
19.
The results of photometric observations of comet/asteroid 2060 Chiron at the Observatório do Pico dos Dias (Brazil-OPD) and the Observatoire de Haute-Provence (France-OHP) during 1994 and 1995 are presented. The analysis of the data shows a decrease of 2060 Chiron brightness from its peak values of 1988–1991. The absolute magnitude, Hv, varies from a maximum of 6.6 in February 1994 up to a minimum of 6.8 in June 1995. Therefore 2060 Chiron is back to a minimum of activity close to that of 1983–1985. The slope parameter G is found to be G = 0.71 ± 0.15. It is suggested that the H-G magnitude system, generally adopted to present 2060 Chiron brightness, is not the most appropriate due to the cometary activity of this object.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号