首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   4篇
测绘学   3篇
大气科学   20篇
地球物理   9篇
地质学   11篇
海洋学   1篇
天文学   6篇
自然地理   1篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
21.
A 10 m long peat core from the Kanaka Crater (20° 25′ S, 57° 31′ E), located at 560 m elevation in Mauritius, was analyzed for microfossils. Eight radiocarbon ages show the pollen record reflects environmental and climatic change of the last ca. 38 cal ka BP. The record shows that the island was continuously covered by forest with Erica heath (Philippia) in the uplands. Cyperaceous reedswamp with Pandanus trees was abundant in the coastal lowlands as well as locally in the waterlogged crater. The record shows changes in climatic humidity (wet from 38.0 to 22.7 cal ka BP, drier from 22.7 to 10.6 cal ka BP, and wetter again from 10.6 cal ka BP to recent) as the main response to climate change. A high turnover in montane forest species is evidenced at 22.7 cal ka BP and at the start of the Holocene. The limited altitudinal ranges in the mountains of Mauritius (maximum altitude 828 m), and changing humidity being more important than changing temperature, suggests that in response to climate change a reassortment in taxonomic composition of montane forests might be equally important as displacement of forest types to new altitudinal intervals. We found weak impact of the latitudinal migration of the Intertropical Convergence Zone and data suggest that the Indian Ocean Dipole is a more important driver for climatic change in the southwest Indian Ocean. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
22.
This paper describes the progress on the Virtual Meteor Observatory (VMO), a database which is being developed at ESA/RSSD to store video meteor observations and their derived orbits. The VMO was triggered by a discussion which took place at the first Meteor Orbit Determination (MOD) workshop in Roden, The Netherlands, in September 2006. Representatives of 15 groups working on the determination of meteor orbits and working with the resulting orbits discussed the design and implementation of a database which would combine different meteor orbit datasets. From this the concept of the VMO was born, which will, in the long run, allow accessing meteor observations via the internet. In the beginning, it will focus on meteor orbit data obtained with video systems. This paper presents the architectural design of the database as it has been defined in the meantime.  相似文献   
23.
In situ chemical oxidation (ISCO) followed by a bioremediation step is increasingly being considered as an effective biphasic technology. Information on the impact of chemical oxidants on organohalide respiring bacteria (OHRB), however, is largely lacking. Therefore, we used quantitative PCR (qPCR) to monitor the abundance of OHRB (Dehalococcoides mccartyi, Dehalobacter, Geobacter, and Desulfitobacterium) and reductive dehalogenase genes (rdh; tceA, vcrA, and bvcA) at a field location contaminated with chlorinated solvents prior to and following treatment with sodium persulfate. Natural attenuation of the contaminants tetrachloroethene (PCE) and trichloroethene (TCE) observed prior to ISCO was confirmed by the distribution of OHRB and rdh genes. In wells impacted by persulfate treatment, a 1 to 3 order of magnitude reduction in the abundances of OHRB and complete absence of rdh genes was observed 21 days after ISCO. Groundwater acidification (pH<3) and increase in the oxidation reduction potential (>500 mV) due to persulfate treatment were significant and contributed to disruption of the microbial community. In wells only mildly impacted by persulfate, a slight stimulation of the microbial community was observed, with more than 1 order of magnitude increase in the abundance of Geobacter and Desulfitobacterium 36 days after ISCO. After six months, regeneration of the OHRB community occurred, however, neither D. mccartyi nor any rdh genes were observed, indicating extended disruption of biological natural attenuation (NA) capacity following persulfate treatment. For full restoration of biological NA activity, additional time may prove sufficient; otherwise addition electron donor amendment or bioaugmentation may be required.  相似文献   
24.
Two important atmospheric features affecting El Niño-Southern Oscillation (ENSO) are atmospheric noise and a nonlinear atmospheric response to SST. In this article, we investigate the roles of these atmospheric features in ENSO in observations and coupled Global Climate Models (GCMs). We first quantify the most important linear couplings between the ocean and atmosphere. We then characterize atmospheric noise by its patterns of standard deviation and skewness and by spatial and temporal correlations. GCMs tend to simulate lower noise amplitudes than observations. Additionally, we investigate the strength of a nonlinear response of wind stress to SST. Some GCMs are able to simulate a nonlinear response of wind stress to SST, although weaker than in observations. These models simulate the most realistic SST skewness. The influence of the couplings and noise terms on ENSO are studied with an Intermediate Climate Model (ICM). With couplings and noise terms fitted to either observations or GCM output, the simulated climates of the ICM versions show differences in ENSO characteristics similar to differences in ENSO characteristics in the original data. In these model versions the skewness of noise is of minor influence on ENSO than the standard deviation of noise. Both the nonlinear response of wind stress to SST anomalies and the relation of noise to the background SST contribute to SST skewness. The ICM is not yet fully evolved, the results rather show that this is a promising route. Overall, atmospheric noise with realistic standard deviation pattern and spatial correlations seems to be important for simulating an irregular ENSO. Both a nonlinear atmospheric response to SST and the dependence of noise on the background SST influence the El Niño/La Niña asymmetry.  相似文献   
25.
Climate models predict substantial summer precipitation reductions in Europe and the Mediterranean region in the twenty-first century, but the extent to which these models correctly represent the mechanisms of summertime precipitation in this region is uncertain. Here an analysis is conducted to compare the observed and simulated impacts of the dominant large-scale driver of summer rainfall variability in Europe and the Mediterranean, the summer North Atlantic Oscillation (SNAO). The SNAO is defined as the leading mode of July–August sea level pressure variability in the North Atlantic sector. Although the SNAO is weaker and confined to northern latitudes compared to its winter counterpart, with a southern lobe located over the UK, it significantly affects precipitation in the Mediterranean, particularly Italy and the Balkans (correlations of up to 0.6). During high SNAO summers, when strong anticyclonic conditions and suppressed precipitation prevail over the UK, the Mediterranean region instead is anomalously wet. This enhanced precipitation is related to the presence of a strong upper-level trough over the Balkans—part of a hemispheric pattern of anomalies that develops in association with the SNAO—that leads to mid-level cooling and increased potential instability. Neither this downstream extension nor the surface influence of the SNAO is captured in the two CMIP3 models examined (HadCM3 and GFDL-CM2.1), with weak or non-existent correlations between the SNAO and Mediterranean precipitation. Because these models also predict a strong upward SNAO trend in the future, the error in their representation of the SNAO surface signature impacts the projected precipitation trends. In particular, the attendant increase in precipitation that, based on observations, should occur in the Mediterranean and offset some of the non-SNAO related drying does not occur. Furthermore, the fact that neither the observed SNAO nor summer precipitation in Europe/Mediterranean region exhibits any significant trend so far (for either the full century or the recent half of the record) does not increase our confidence in these model projections.  相似文献   
26.
The characteristics of the strong ground motion accelerograms from the 1999 Kocaeli earthquake are investigated in detail in this study. The emphasis is on the comparison of the response spectra for the fault normal (FN) and fault parallel (FP) components of the ground motions. The results show that the near-fault records with directivity effects characterize themselves with increased base shear demands rather than increased displacement demands for both the FN and FP components and a narrower velocity sensitive region for the FN component. This study also shows that the effectiveness of base isolation may vary from site to site and for a given site, from component to component. The site effects in the Marmara region during the 1999 Kocaeli earthquake are examined. Site amplifications are predicted by the classical spectral ratio (CSR) and the receiver function (RF) methods. The CSR method gives higher estimates for the site amplifications compared to the RF method and is in better conformity with the observed damage during the Kocaeli earthquake. The districts of Istanbul that are especially susceptible to site amplification hazard are determined. It is apparent from the results that the site amplification hazard risk is the highest for Avcilar and Bakirkoy districts. This study also shows that for sites which have the risk of soil amplification for long-period structures, liquefaction may not be beneficial as a natural base isolator, and may result in shifting the eigenperiod of the low- and mid-rise structures to the critical periods with high site amplifications. This may be especially the case for Avcilar and Bakirkoy districts. In Fatih, Bakirkoy, and Cekmece districts, the predominant period of the ground motion is calculated to be very close to the eigenperiods of the typical residential buildings. Therefore, these three districts are expected to experience heavier damages in future earthquakes due to resonance effects.  相似文献   
27.
Probability distributions of daily maximum and minimum temperatures in a suite of ten RCMs are investigated for (1) biases compared to observations in the present day climate and (2) climate change signals compared to the simulated present day climate. The simulated inter-model differences and climate changes are also compared to the observed natural variability as reflected in some very long instrumental records. All models have been forced with driving conditions from the same global model and run for both a control period and a future scenario period following the A2 emission scenario from IPCC. We find that the bias in the fifth percentile of daily minimum temperatures in winter and at the 95th percentile of daily maximum temperature during summer is smaller than 3 (±5°C) when averaged over most (all) European sub-regions. The simulated changes in extreme temperatures both in summer and winter are larger than changes in the median for large areas. Differences between models are larger for the extremes than for mean temperatures. A comparison with historical data shows that the spread in model predicted changes in extreme temperatures is larger than the natural variability during the last centuries.  相似文献   
28.
This study reports results from evaluation of the quality of digital elevation model (DEM) from four sources viz. topographic map (1:50,000), Shuttle Radar Topographic Mission (SRTM) (90 m), optical stereo pair from ASTER (15 m) and CARTOSAT (2.5 m) and their use in derivation of hydrological response units (HRUs) in Sitla Rao watershed (North India). The HRUs were derived using water storage capacity and slope to produce surface runoff zones. The DEMs were evaluated on elevation accuracy and representation of morphometric features. The DEM derived from optical stereo pairs (ASTER and CARTOSAT) provided higher vertical accuracies than the SRTM and topographic map-based DEM. The SRTM with a coarse resolution of 90 m provided vertical accuracy but better morphometry compared to topographic map. The HRU maps derived from the fine resolution DEM (ASTER and CARTOSAT) were more detailed but did not provide much advantage for hydrological studies at the scale of Sitla Rao watershed (5800 ha).  相似文献   
29.
Wind erosion is an important soil erosion and hence a soil degradation problem in the Sahelian zone of West Africa. Potentially, the characteristic dryland vegetation with scattered trees and shrubs can provide for soil erosion protection from wind erosion, but so far adequate quantification of vegetation impacts is lacking. The aim of this study was to develop a model of wind‐blown soil erosion and sediment transport around a single shrub‐type vegetation element. Starting with the selection of a suitable transport equation from four possible sediment transport equations, the effects of a single vegetation element on wind speed were parameterized. The modified wind speed was then applied to a sediment transport equation to model the change in sediment mass flux around a shrub. The model was tested with field data on wind speed and sediment transport measured around isolated shrubs in a farmer's field in the north of Burkina Faso. The simple empirical equation of Radok (Journal of Glaciology 19 : 123–129, 1977) performed best in modelling soil erosion and sediment transport, both for the entire event duration and for each minute within an event. Universal values for the empirical constants in the sediment transport equation could not be obtained because of the large variability in soil and roughness characteristics. The pattern of wind speed, soil erosion and sediment transport behind a shrub and on either side of it was modelled. The wind speed changed in the lee of the vegetation element depending on its porosity, height and downwind position. Wind speed was recovered to the upstream speed at a downwind distance of 7·5 times the height of the shrub. The variability in wind direction created a ‘rotating’ area of influence around the shrub. Compared to field measurements the model predicted an 8% larger reduction in sediment transport in the lee of the vegetation element, and a 22% larger increase beside the vegetation element. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
30.
Here we present a set of regional climate scenarios of sea level rise for the northeast Atlantic Ocean. In this study, the latest observations and results obtained with state-of-the-art climate models are combined. In addition, regional effects due to ocean dynamics and changes in the Earth’s gravity field induced by melting of land-based ice masses have been taken into account. The climate scenarios are constructed for the target years 2050 and 2100, for both a moderate and a large rise in global mean atmospheric temperature (2 °C and 4 °C in 2100 respectively). The climate scenarios contain contributions from changes in ocean density (global thermal expansion and local steric changes related to changing ocean dynamics) and changes in ocean mass (melting of mountain glaciers and ice caps, changes in the Greenland and Antarctic ice sheets, and (minor) terrestrial water-storage contributions). All major components depend on the global temperature rise achieved in the target periods considered. The resulting set of climate scenarios represents our best estimate of twenty-first century sea level rise in the northeast Atlantic Ocean, given the current understanding of the various contributions. For 2100, they yield a local rise of 30 to 55 cm and 40 to 80 cm for the moderate and large rise in global mean atmospheric temperature, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号