首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   19篇
  国内免费   4篇
测绘学   9篇
大气科学   31篇
地球物理   122篇
地质学   96篇
海洋学   14篇
天文学   38篇
综合类   1篇
自然地理   33篇
  2023年   2篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   14篇
  2017年   8篇
  2016年   10篇
  2015年   9篇
  2014年   16篇
  2013年   20篇
  2012年   12篇
  2011年   16篇
  2010年   19篇
  2009年   17篇
  2008年   16篇
  2007年   17篇
  2006年   18篇
  2005年   20篇
  2004年   13篇
  2003年   13篇
  2002年   10篇
  2001年   12篇
  2000年   8篇
  1999年   7篇
  1998年   9篇
  1997年   2篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
排序方式: 共有344条查询结果,搜索用时 297 毫秒
81.
正1.Overview The 2016 International Radiation Symposium,a joint venture between the IRC(International Radiation Commission)and IAMAS(International Association of Meteorology and Atmospheric Sciences),took place at the University of Auckland from April 16th to 22nd.The wide scope of atmospheric radiation research was apparent,with focuses rang-  相似文献   
82.
Seismic data from a 186 km-long refraction profile in the Santa Barbara Channel have been interpreted using several velocity inversion techniques. Data were obtained during two cruises in 1978 and 1979. Seismic arrivals from fifty explosions of between 1 and 300 lbs. of TNT were recorded by two ocean bottom seismometers, four permanent ocean bottom stations (University of Southern California), and much of the United States Geological Survey/California Institute of Technology southern California seismic network. Travel-time inversion gives a V p of 6.3 km sec-1 at 7.2 km depth above 7.2 km sec-1 at 14.4 km depth at the western end of the channel. At the eastern end, solutions suggest three sediment refractors overlying V p of 6.4 km sec-1 at 7.3 km depth, above 7.0 km sec-1 at 11.6 km depth, above mantle arrivals with V p of 8.3 km sec-1 at 21.8 km depth. The velocity structure determined by these methods suggests that the channel has a sedimentary fill of from 4 to 7 km and a layer of mafic plus ultramafic rock 14 to 17 km thick. The greatest thicknesses of sediments are restricted to east of Point Conception. The velocity data also suggest that the Franciscan formation may not be present beneath the channel. Rather, the crust here may represent a thickened portion of the Coast Range ophiolite.  相似文献   
83.
We present Stokes I Zeeman splitting measurements of sunspots using the highly sensitive (g = 3) Fe i line at = 1.5649 m. The splittings are compared with simultaneous intensity measurements in the adjacent continuum. The relation between magnetic field strength and temperature has a characteristic, nonlinear shape in all the spots studied. In the umbra, there is an approximately linear relation between B 2 and T b, consistent with magnetohydrostatic equilibrium in a nearly vertical field. A distinct flattening of the B 2 vs T brelationship in the inner penumbra may be due to changes in the lateral pressure balance as the magnetic field becomes more horizontal; spatially unresolved intensity inhomogeneities may also influence the observed relation.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.  相似文献   
84.
Setting limit on groundwater extractions is important to ensure sustainable groundwater management. Lack of extraction data can affect interpretations of historical pressure changes, predictions of future impacts, accuracy of groundwater model calibration, and identification of sustainable management options. Yet, many groundwater extractions are unmetered. Therefore, there is a need for models that estimate extraction rates and quantify model outputs uncertainties arising due to a lack of data. This paper develops such a model within the Generalized Linear Modeling (GLM) framework, using a case study of stock and domestic (SD) extractions in the Surat Cumulative Management Area, a predominantly cattle farming region in eastern Australia. Various types of extraction observations were used, ranging from metering to analytically-derived estimates. GLMs were developed and applied to estimate the property-level extraction amounts, where observation types were weighted by perceived relative accuracy, and well usage status. The primary variables found to affect property-level extraction rates were: yearly average temperature and rainfall, pasture, property area, and number of active wells; while variables most affecting well usage were well water electrical conductivity, spatial coordinates, and well age. Results were compared with analytical estimates of property-level extraction, illustrating uncertainties and potential biases across 20 hydrogeological units. Spatial patterns of mean extraction rates (and standard deviations) are presented. It is concluded that GLMs are well suited to the problem of extraction rate estimation and uncertainty analysis, and are ideal when model verification is supported by measurement of a random sample of properties.  相似文献   
85.
Pacific water exits the Chukchi Sea shelf through Barrow Canyon in the east and Herald Canyon in the west, forming an eastward-directed shelfbreak boundary current that flows into the Beaufort Sea. Here we summarize the transformation that the Pacific water undergoes in the two canyons, and describe the characteristics and variability of the resulting shelfbreak jet, using recently collected summertime hydrographic data and a year-long mooting data set. In both canyons the northward-flowing Pacific winter water switches from the western to the eastern flank of the canyon, interacting with the northward-flowing summer water. In Barrow canyon the vorticity structure of the current is altered, while in Herald canyon a new water mass mode is created. In both instances hydraulic effects are believed to be partly responsible for the observed changes. The shelfl)reak jet that forms from the canyon outflows has distinct seasonal configurations, from a bottom-intensified flow carrying cold, dense Pacific water in spring, to a surface-intensified current advecting warm, buoyant water in summer. The current also varies significantly on short timescales, from less than a day to a week. In fall and winter much of this mesoscale variability is driven by storm events, whose easterly winds reverse the current and cause upwelling. Different types of eddies are spawned from the current, which are characterized here using hydrographic and satellite data.  相似文献   
86.
87.
Despite the low permeability of claypan soils, groundwater has been heavily contaminated by nitrate in agricultural watersheds dominated by claypan soils. However, it is unclear how nitrate concentrations in groundwater affect stream water quality. In this study, streamflow pathways were investigated using natural geochemical tracers in the 73-km2 Goodwater Creek Experimental Watershed in northeastern Missouri. Samples were collected from 2011 to 2017 from stream water (weekly-biweekly), precipitation (event-based), groundwater in 25 wells with screened depths varying from 2 to 16 m (bimonthly–seasonal) and interflow above the claypan in 7 shallow piezometers (weekly–monthly). The results of endmember mixing analysis using major ions indicate that streamflow was dominated by near-surface runoff (59 ± 20%), followed by interflow (25 ± 16%) and groundwater (16 ± 13%). Analysis of endmember distances using the mixing space defined by stream water chemistry suggests that groundwater contributions to streamflow came primarily from the intermediate to deep glacial till aquifer near and below 8 m. Near-surface runoff was persistent and dominant even after isolated precipitation events during a prolonged dry period. It is hypothesised that the alluvial aquifer near stream banks acts as a mixing zone to receive and store various source waters, resulting in persistent delivery of runoff to the stream. Groundwater, even though its contribution was limited, plays a significant role in regulating streamflow NO3 concentrations. This study significantly improves our understanding of claypan hydrology and will lead to the development of models and decision support tools for implementation of management practices that improve groundwater and stream water quality in restrictive layer watersheds.  相似文献   
88.
We performed a series of piston-cylinder experiments on a synthetic pelite starting material over a pressure and temperature range of 3.0–5.0 GPa and 1,100–1,600°C, respectively, to examine the melting behaviour and phase relations of sedimentary rocks at upper mantle conditions. The anhydrous pelite solidus is between 1,150 and 1,200°C at 3.0 GPa and close to 1,250°C at 5.0 GPa, whereas the liquidus is likely to be at 1,600°C or higher at all investigated pressures, giving a large melting interval of over 400°C. The subsolidus paragenesis consists of quartz/coesite, feldspar, garnet, kyanite, rutile, ±clinopyroxene ±apatite. Feldspar, rutile and apatite are rapidly melted out above the solidus, whereas garnet and kyanite are stable to high melt fractions (>70%). Clinopyroxene stability increases with increasing pressure, and quartz/coesite is the sole liquidus phase at all pressures. Feldspars are relatively Na-rich [K/(K + Na) = 0.4–0.5] at 3.0 GPa, but are nearly pure K-feldspar at 5.0 GPa. Clinopyroxenes are jadeite and Ca-eskolaite rich, with jadeite contents increasing with pressure. All supersolidus experiments produced alkaline dacitic melts with relatively constant SiO2 and Al2O3 contents. At 3.0 GPa, initial melting is controlled almost exclusively by feldspar and quartz, giving melts with K2O/Na2O ~1. At 4.0 and 5.0 GPa, low-fraction melting is controlled by jadeite-rich clinopyroxene and K-rich feldspar, which leads to compatible behaviour of Na and melts with K2O/Na2O ≫ 1. Our results indicate that sedimentary protoliths entrained in upwelling heterogeneous mantle domains may undergo melting at greater depths than mafic lithologies to produce ultrapotassic dacitic melts. Such melts are expected to react with and metasomatise the surrounding peridotite, which may subsequently undergo melting at shallower levels to produce compositionally distinct magma types. This scenario may account for many of the distinctive geochemical characteristics of EM-type ocean island magma suites. Moreover, unmelted or partially melted sedimentary rocks in the mantle may contribute to some seismic discontinuities that have been observed beneath intraplate and island-arc volcanic regions.  相似文献   
89.
Hydrologic Sensitivity of Global Rivers to Climate Change   总被引:12,自引:1,他引:12  
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号