首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   4篇
  国内免费   1篇
测绘学   2篇
大气科学   11篇
地球物理   22篇
地质学   68篇
海洋学   3篇
天文学   13篇
自然地理   8篇
  2022年   1篇
  2021年   3篇
  2019年   6篇
  2018年   4篇
  2017年   1篇
  2016年   7篇
  2015年   8篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   7篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   5篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1975年   2篇
  1974年   2篇
  1965年   2篇
  1964年   1篇
  1963年   2篇
  1962年   1篇
  1960年   2篇
  1959年   1篇
  1958年   2篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
91.
Controls on sonic velocity in carbonates   总被引:2,自引:0,他引:2  
Compressional and shear-wave velocities (V p andV s) of 210 minicores of carbonates from different areas and ages were measured under variable confining and pore-fluid pressures. The lithologies of the samples range from unconsolidated carbonate mud to completely lithified limestones. The velocity measurements enable us to relate velocity variations in carbonates to factors such as mineralogy, porosity, pore types and density and to quantify the velocity effects of compaction and other diagenetic alterations.Pure carbonate rocks show, unlike siliciclastic or shaly sediments, little direct correlation between acoustic properties (V p andV s) with age or burial depth of the sediments so that velocity inversions with increasing depth are common. Rather, sonic velocity in carbonates is controlled by the combined effect of depositional lithology and several post-depositional processes, such as cementation or dissolution, which results in fabrics specific to carbonates. These diagenetic fabrics can be directly correlated to the sonic velocity of the rocks.At 8 MPa effective pressureV p ranges from 1700 to 6500 m/s, andV s ranges from 800 to 3400 m/s. This range is mainly caused by variations in the amount and type of porosity and not by variations in mineralogy. In general, the measured velocities show a positive correlation with density and an inverse correlation with porosity, but departures from the general trends of correlation can be as high as 2500 m/s. These deviations can be explained by the occurrence of different pore types that form during specific diagenetic phases. Our data set further suggests that commonly used correlations like Gardner's Law (V p-density) or the time-average-equation (V p-porosity) should be significantly modified towards higher velocities before being applied to carbonates.The velocity measurements of unconsolidated carbonate mud at different stages of experimental compaction show that the velocity increase due to compaction is lower than the observed velocity increase at decreasing porosities in natural rocks. This discrepancy shows that diagenetic changes that accompany compaction influence velocity more than solely compaction at increasing overburden pressure.The susceptibility of carbonates to diagenetic changes, that occur far more quickly than compaction, causes a special velocity distribution in carbonates and complicates velocity estimations. By assigning characteristic velocity patterns to the observed diagenetic processes, we are able to link sonic velocity to the diagenetic stage of the rock.  相似文献   
92.
Assemblages of ichthyofauna of shallow inshore habitats along Californía’s central coast are described in terms of species composition, abundance, and life-style categories. A total of 22,334 fishes from 65 species and 27 families was collected with otter trawls at six sites in the main channel and tidal creeks of Elkhorn Slough, a tidal embayment and seasonal estuary, and two nearshore ocean stations in Monterey Bay during 44 months between August 1974 and June 1980. Greater than 90% of the catch comprised 10 species. The four dominant species,Cymatogaster aggregata, Leptocottus armatus, Phanerodon furcatus, andEmbiotoca jacksoni, occurred during most or all seasons and were classified as residents or partial residents. Several abundant species were marine immigrants that seasonally use the slough as spawning and nursery grounds; this resulted in higher abundance and species richness during summer. Species collected during winter largely were slough residents. Species compsosition and richness varied with distance from the slough entrance. The ocean assemblage was most different, and its similarity to other stations decreased progressively with distance inland and into the tidal creeks. During our study, 5,074 fishes were collected by beach seine in Bennett Slough, a remote shallow marsh basin adjacent to the entrance of Elkhorn Slough. Species richness was relatively low and three euryhaline species accounted for >80% of the total catch. The species assemblage was most similar to those at the tidal creek and most shallow stations of Elkhorn Slough. Resident species numerically dominated assemblages in Bennett Slough and the most inland areas of Elkhorn Slough. The high relative abundance of marine-related fishes (classified as marine, marine immigrant, and partial resident), entering Elkhorn Slough early in life or as spawning adults indicates the importance of this habitat to nearshore fish assemblages.  相似文献   
93.
Stability analysis, based on infinite slope analysis and geotechnical data from a suite of 34 cores collected from the continental slope between Wilmington and Lindenkohl Canyons, indicates that the Quaternary surficial silty clay sediments on gentle slopes are stable; that sediment stability on steeper slopes (14°–19°) is marginal; and that on precipitous slopes (>50°) only a thin veneer of unconsolidated sediments can exist. Small earthquake-induced accelerations or the effects of internal waves can result in slope sediment instabilities.  相似文献   
94.
The January 17, 1994 Northridge earthquake (Mw = 6.7, 34.213° N, 118.537° W, depth = 18.4 km) was recorded extensively in the immediate source region by strong, ground motion accelerometers. The resulting seismograms show complex S wave patterns. Nevertheless, visual correlations of the strong-ground-motion velocity and displacement time-histories clearly identify two significant wave pulses: a secondary S pulse (called S2) arriving 3–5 seconds after the initial S wave pulse (called S1). A plausible assumption is that these phases are generated at areas on the rupturing thrust fault that experienced especially large slip. Conventional travel-time computations, relating the relative arrival times between the onsets of the primary S1 and secondary S2 phases, yield a hypocenter of the initiation point, constrained to a independently etimated fault plane, of the secondary wave source (called H2) at 34.26°N, 118.54° W, with a depth of 14.1 km; the 68% confidence error in depth is 1.3 km. This location is about 6 km up-dip and north from the estimated hypocenter, on the fault plane of the initial principal seismic source (called H1). The seismic moment for both the initial H1 and secondary source H2 was estimated from the SH displacement pulse. Values averaged over eight stations were 8.61 ± 9.56 × 1024 dyne-cm and 2.49 ± 2.31 × 1025 dyne-cm respectively. Reasons why the sum of the two seismic moments is smaller than the total estimated seismic moment of 1.2 × 1026 dyne-cm for the Northridge earthquake are discussed. The location of the initiation point of a second source H2 in the Northridge thrust faulting is consistent with independent computations of the fault slip pattern. The estimated stress drop for the initial and secondary sources are 1 = 150 ± 15 bars and 2 = 110 ± 11 bars, respectively.  相似文献   
95.
We report on recent refinements and the current status for the rotational state models and the reference frames of the planet Mercury. We summarize the performed measurements of Mercury rotation based on terrestrial radar observations as well as data from the Mariner 10 and the MESSENGER missions. Further, we describe the different available definitions of reference systems for Mercury and obtain the corresponding reference frame using data provided by instruments on board MESSENGER. In particular, we discuss the dynamical frame, the principal-axes frame, the ellipsoid frame, as well as the cartographic frame. We also describe the reference frame adopted by the MESSENGER science team for the release of their cartographic products, and we provide expressions for transformations from this frame to the other reference frames.  相似文献   
96.
Jupiter’s satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites’ surfaces on the diurnal tidal cycle. Such variations are described by the Love numbers \(k_2\) and \(h_2\) for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags \( \phi _{k_2}\) and \( \phi _{h_2}\) of these complex numbers contain information about the rheological and dissipative states of the satellites. Starting from interior structure models and assuming a Maxwell rheology to compute the tidal deformation, we calculate the phase-lags in application to Ganymede and Europa. For both satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference \(\varDelta \phi = \phi _{k_2}- \phi _{h_2}\) can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small. In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities \({<}10^{14}\) Pa s and would indicate a highly dissipative state of the deep interior. In this case \(\varDelta \phi \) is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite. For Europa \(\varDelta \phi \) could reach values exceeding \(20^\circ \) and phase-lag measurements could help distinguish between (1) a hot dissipative silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA’s Jupiter Icy Moons Explorer (JUICE) and NASA’s Europa Multiple Flyby Mission, both targeted for the Jupiter system.  相似文献   
97.
The Santaren Drift between the Great Bahama Bank and Cay Sal Bank (Bahamas) is closely linked to the development of the Gulf Stream and its shape and geometry record the local to global oceanographic, climatic and tectonic events since the Miocene. High‐resolution multichannel seismic data from the Santaren Channel allow detailed insight into the growth phases of the contourite drift, and by using the stratigraphic information from Ocean Drilling Program Site 1006 to infer its sedimentation rates. The results bring new understanding to this region and to interpretation of carbonate drifts. The data document that the signatures of a bottom current flow in the Santaren Channel initiated about 12·3 Ma, as indicated by the first occurrence of sheeted drifts and moat development at the northern part of the Santaren Channel. Narrowing and steepening of moat flanks as well as the pronounced upslope migration of the moat reflects a sustained current acceleration of the bottom currents until 5·5 Ma, associated with a transformation into mounded elongated drifts. Between 5·5 Ma and 3·1 Ma, bottom current intensity reached its maximum probably caused by the final closure of the Central American Seaway. The last 3·1 Myr were characterized by a marked increase in volume through flow reaching a maximum during the past 900 kyr. Drift growth was driven by the combined sources of export from the shallow‐water carbonate factory and by pelagic rain. The Middle Miocene channel‐related sheeted drift of the inner Santaren Channel is characterized by low accumulation rates, but a rapid increase of accumulation rates occurred during the Early Pliocene. The contourite drift buildup was disturbed by minor erosional phases with narrow moats in the Late Pliocene due to increasing bottom‐current velocities forced by strengthened Atlantic Ocean ventilation. The Early Pleistocene was dominated by increased periplatform sedimentation and margin progradation facilitated by a reduction in along‐slope current flow speed and a concurrent widening and flattening of the moats.  相似文献   
98.
This study investigates the δ13C values of Middle Miocene–Modern drift deposits and periplatform sediments in the Maldives and compares these data with the global δ13C values derived from bulk oceanic sediments and foraminifera. This comparison reveals that while the δ13C values of the early Miocene periplatform sediments in the Maldives appear to track the global record of δ13C values, including increases associated with the Oligocene–Miocene boundary as well as the variations within the Monterey Event, the correlation with the Monterey Event may be coincidental. It is suggested that variations in δ13C values do not reflect changes in oceanic dissolved inorganic carbon, but instead pulses of sediment arising from platform progradation that contribute carbonates with elevated δ13C values derived from the adjacent shallow‐water atolls. This conclusion is supported both by correlations between the seismic sequence architecture and the δ13C values which document progradation of 13C‐rich platform sediments, and also by the continuation of the interval of 13C‐rich sediments past the end of the Monterey Event at 13 Ma within the drift.  相似文献   
99.
The Upper Cretaceous (Campanian–Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is compared to newly discovered contourite drifts in the Maldives. Like the drift deposits in the Maldives, the Orfento Formation fills a channel and builds a Miocene delta‐shaped and mounded sedimentary body in the basin that is similar in size to the approximately 350 km2 large coarse‐grained bioclastic Miocene delta drifts in the Maldives. The composition of the bioclastic wedge of the Orfento Formation is also exclusively bioclastic debris sourced from the shallow‐water areas and reworked clasts of the Orfento Formation itself. In the near mud‐free succession, age‐diagnostic fossils are sparse. The depositional textures vary from wackestone to float‐rudstone and breccia/conglomerates, but rocks with grainstone and rudstone textures are the most common facies. In the channel, lensoid convex‐upward breccias, cross‐cutting channelized beds and thick grainstone lobes with abundant scours indicate alternating erosion and deposition from a high‐energy current. In the basin, the mounded sedimentary body contains lobes with a divergent progradational geometry. The lobes are built by decametre thick composite megabeds consisting of sigmoidal clinoforms that typically have a channelized topset, a grainy foreset and a fine‐grained bottomset with abundant irregular angular clasts. Up to 30 m thick channels filled with intraformational breccias and coarse grainstones pinch out downslope between the megabeds. In the distal portion of the wedge, stacked grainstone beds with foresets and reworked intraclasts document continuous sediment reworking and migration. The bioclastic wedge of the Orfento Formation has been variously interpreted as a succession of sea‐level controlled slope deposits, a shoaling shoreface complex, or a carbonate tidal delta. Current‐controlled delta drifts in the Maldives, however, offer a new interpretation because of their similarity in architecture and composition. These similarities include: (i) a feeder channel opening into the basin; (ii) an excavation moat at the exit of the channel; (iii) an overall mounded geometry with an apex that is in shallower water depth than the source channel; (iv) progradation of stacked lobes; (v) channels that pinch out in a basinward direction; and (vi) smaller channelized intervals that are arranged in a radial pattern. As a result, the Upper Cretaceous (Campanian–Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is here interpreted as a carbonate delta drift.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号