首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5009篇
  免费   209篇
  国内免费   93篇
测绘学   157篇
大气科学   534篇
地球物理   1390篇
地质学   2156篇
海洋学   232篇
天文学   614篇
综合类   82篇
自然地理   146篇
  2022年   42篇
  2021年   72篇
  2020年   64篇
  2019年   42篇
  2018年   162篇
  2017年   151篇
  2016年   234篇
  2015年   162篇
  2014年   244篇
  2013年   299篇
  2012年   249篇
  2011年   207篇
  2010年   244篇
  2009年   258篇
  2008年   195篇
  2007年   152篇
  2006年   135篇
  2005年   130篇
  2004年   107篇
  2003年   85篇
  2002年   90篇
  2001年   93篇
  2000年   87篇
  1999年   85篇
  1998年   104篇
  1997年   65篇
  1996年   83篇
  1995年   65篇
  1994年   65篇
  1993年   47篇
  1992年   39篇
  1991年   39篇
  1990年   42篇
  1989年   44篇
  1988年   28篇
  1987年   45篇
  1986年   34篇
  1985年   39篇
  1984年   45篇
  1983年   61篇
  1982年   43篇
  1981年   40篇
  1980年   40篇
  1979年   45篇
  1978年   45篇
  1977年   39篇
  1976年   28篇
  1975年   44篇
  1974年   38篇
  1973年   40篇
排序方式: 共有5311条查询结果,搜索用时 27 毫秒
981.
Ionospheric delays can be efficiently eliminated from single-frequency data using a combination of carrier phases and code ranges. Unfortunately, GPS and GLONASS ranges are relatively noisy which can limit the use of the positioning method. Nevertheless, position standard deviations are in the range of 6–8 cm (horizontal) and 7–9 cm (3d) obtained from diurnal data batches from selected IGS reference stations can be further reduced to 2–3 cm (3d) for weekly smoothed averages. GPS data sets collected in Ghana (Africa) reveal a typical level of 10 cm of deviation that must be anticipated under average conditions. Looking at the future of GNSS, the European Galileo system will, in contrast to GPS, provide the broadband signal E5 that is by far less affected by multipath thus providing rather precise range measurements. Simulated processing runs featuring both high ionospheric and tropospheric delay variations show a 3d position precision of 4 cm even for a data batch as short as just 1 h, whereas GPS L1/Galileo E1 performance is close to 13 cm for the same data set.  相似文献   
982.
The method of geometric-astronomical leveling is presented as a suited technique for the validation of GNSS (Global Navigation Satellite System) heights. In geometric-astronomical leveling, the ellipsoidal height differences are obtained by combining conventional spirit leveling and astronomical leveling. Astronomical leveling with recently developed digital zenith camera systems is capable of providing the geometry of equipotential surfaces of the gravity field accurate to a few 0.1 mm per km. This is comparable to the accuracy of spirit leveling. Consequently, geometric-astronomical leveling yields accurate ellipsoidal height differences that may serve as an independent check on GNSS height measurements at local scales. A test was performed in a local geodetic network near Hanover. GPS observations were simultaneously carried out at five stations over a time span of 48 h and processed considering state-of-the-art techniques and sophisticated new approaches to reduce station-dependent errors. The comparison of GPS height differences with those from geometric-astronomical leveling shows a promising agreement of some millimeters. The experiment indicates the currently achievable accuracy level of GPS height measurements and demonstrates the practical applicability of the proposed approach for the validation of GNSS height measurements as well as the evaluation of GNSS height processing strategies.  相似文献   
983.
The fractions of local traffic (LT), urban background (UBG) and regional background (RBG) of the particle pollution at a traffic-influenced kerbside in Dresden, Germany, were determined by measurements of size-segregated mass concentration, chemical composition and particle size distributions in a network of five measurement stations partly existing and partly set up for this study. Besides the kerbside station, one urban background site and three rural sites were included in the study. Using data from these different sites, the LT, UBG, and RBG contributions were calculated, following the approach of Lenschow et al. (2001). At the kerbside site, 19% of the total number concentration (DpSt = 10–600 nm) could be attributed to the RBG, 15% to the UBG, and 66% to the LT immediately nearby. Particle mass concentrations up to Dpaer = 420 nm RBG amounts to 68%, UBG to 21%, and LT only to 11%. Highest mass concentrations were observed at all stations in autumn and winter during easterly inflow directions. The local traffic fraction of PM10 mass at the kerbside station was found to be 30% for westerly inflow, but only 7% for southeasterly inflow due to the dominating transport fraction from up to 80% of the particle mass at this inflow direction. Size-resolved investigation showed the main fractions in both the particle size ranges of Dpaer = 0.42 to 1.2 and 0.14 to 0.42 μm at all stations. The main components sulphate, ammonium and total carbon showed higher concentrations at south-eastern/eastern inflow in autumn at all stations, while nitrate at the kerbside and urban background site was higher during westerly inflow in winter. The chemical composition at the regional background site at westerly inflow (12% nitrate, 8% sulphate, 11% total carbon) was significantly different from that at easterly inflow (3% nitrate, 15% sulphate, 22% total carbon). The prevailing part of the ionic mass was always found in the fine particle range of Dpaer = 0.14 to 1.2 μm at all stations. For all inflow directions highest total carbon concentrations were observed at the kerbside station, especially in the ultra-fine size range of Dpaer = 0.05 to 0.14 μm with up to 30% of the whole carbon. PAH concentrations were always higher at south-eastern/eastern inflow especially during wintertime. Trace metal components and silicon were found mainly in the coarse mode fraction at the kerbside resulting from abrasion or resuspension.  相似文献   
984.
A fast coupled global climate model (CGCM) is used to study the sensitivity of El Ni?o Southern Oscillation (ENSO) characteristics to a new interactive flux correction scheme. With no flux correction applied our CGCM reveals typical bias in the background state: for instance, the cold tongue in the tropical east Pacific becomes too cold, thus degrading atmospheric sensitivity to variations of sea surface temperature (SST). Sufficient atmospheric sensitivity is essential to ENSO. Our adjustment scheme aims to sustain atmospheric sensitivity by counteracting the SST drift in the model. With reduced bias in the forcing of the atmosphere, the CGCM displays ENSO-type variability that otherwise is absent. The adjustment approach employs a one-way anomaly coupling from the ocean to the atmosphere: heat fluxes seen by the ocean are based on full SST, while heat fluxes seen by the atmosphere are based on anomalies of SST. The latter requires knowledge of the model??s climatological SST field, which is accumulated interactively in the spin-up phase (??training??). Applying the flux correction already during the training period (by utilizing the evolving SST climatology) is necessary for efficiently reducing the bias. The combination of corrected fluxes seen by the atmosphere and uncorrected fluxes seen by the ocean implies a restoring mechanism that counteracts the bias and allows for long stable integrations in our CGCM. A suite of sensitivity runs with varying training periods is utilized to study the effect of different levels of bias in the background state on important ENSO properties. Increased duration of training amplifies the coupled sensitivity in our model and leads to stronger amplitudes and longer periods of the Nino3.4 index, increased emphasis of warm events that is reflected in enhanced skewness, and more pronounced teleconnections in the Pacific. Furthermore, with longer training durations we observe a mode switch of ENSO in our model that closely resembles the observed mode switch related to the mid-1970s ??climate shift??.  相似文献   
985.
986.
The reduction and equalization of the salt concentrations in the River Werra have resulted in a gradual recovery of the aquatic flora. Spatial high-resolution macrophyte mappings document the spread of the aquatic vascular plants in the middle and lower River Werra. Simultaneously, the plankton blooms have declined. Changes in the composition of the algal communities including diatoms also indicated lower salinity. In addition to the salinity, high nutrient concentrations, waste water discharges and structural degradation are important stressors in the River Werra as shown by e.g. low species richness of vascular plants and the common occurrence of pollution tolerant diatoms. From the existing data it is clear that an encompassing improvement of the ecological conditions in the River Werra can only be achieved by further restoration measures considering all stressors.  相似文献   
987.
The reduction and the smoothened amplitudes of the chloride concentrations since 2000 have resulted in a gradual positive development of the aquatic fauna in the River Werra. In the salinized section of the river increasing species numbers have been determined along the salinity gradient, which shows maximum chloride concentrations of about 2500 mg/l, maximum potash concentrations at approximately 200 mg/l, and magnesia concentrations peaked at 320 mg/l. As an immediate consequence of the reduction in salt concentration the immigration of various caddis fly species into the lower River Werra was observed. The Number of taxa per sample rose from 5 to more than 30 in the lower Werra region. Changes in species-richness could be seen more frequently in river sections where chloride concentrations fluctuated around 1500 mg/l.  相似文献   
988.
A steep escarpment edge, deep gorges and distinct knickzones in river profiles characterize the landscape on the Western Escarpment of the Andes between ~5°S and ~18°S (northern Peru to northern Chile). Strong north–south and east–west precipitation gradients are exploited in order to determine how climate affects denudation rates in three river basins spanning an otherwise relatively uniform geologic and geomorphologic setting. Late Miocene tectonics uplifted the Meseta/Altiplano plateau (~3000 m a.s.l.), which is underlain by a series of Tertiary volcanic‐volcanoclastic rocks. Streams on this plateau remain graded to the Late Miocene base level. Below the rim of the Meseta, streams have responded to this ramp uplift by incising deeply into fractured Mesozoic rocks via a series of steep, headward retreating knickzones that grade to the present‐day base level defined by the Pacific Ocean. It is found that the Tertiary units on the plateau function as cap‐rocks, which aid in the parallel retreat of the sharp escarpment edge and upper knickzone tips. 10Be‐derived catchment denudation rates of the Rio Piura (5°S), Rio Pisco (13°S) and Rio Lluta (18°S) average ~10 mm ky?1 on the Meseta/Altiplano, irrespective of precipitation rates; whereas, downstream of the escarpment edge, denudation rates range from 10 mm ky?1 to 250 mm ky?1 and correlate positively with precipitation rates, but show no strong correlation with hillslope angles or channel steepness. These relationships are explained by the presence of a cap‐rock and climate‐driven fluvial incision that steepens hillslopes to near‐threshold conditions. Since escarpment retreat and the precipitation pattern were established at least in the Miocene, it is speculated that the present‐day distribution of morphology and denudation rates has probably remained largely unchanged during the past several millions of years as the knickzones have propagated headward into the plateau. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
989.
An assessment of water quality measurements during a long‐lasting low water period in the Elbe River is presented. Weekly samples were taken from May to December 2003 at a sampling site in the middle part of the Elbe River. For multivariate data analysis, 34 parameters of 46 samplings were considered. As a result of this analysis, 78% of the variance of the data set is explained by five factors. They can be assigned to the following latent variables: season (37.5%) > tributaries (12.7%) > re‐suspension (10.4%) > discharge (9.4%) > complexation (8.5%). For the investigated sampling site, two key processes were identified as dominating factors on the water quality during low water conditions. First, seasonal phytoplankton development caused changes in redox conditions with consequences for re‐solution of pollutants from sediments. Second, tributaries have a higher impact on the main stream, due to changes in mixing processes. Therefore, in addition to flood investigations, monitoring strategies, and management plans should be developed in order to survey changes in water quality during low water conditions.  相似文献   
990.
In this study, it was aimed to determine the effect of various aeration rates on composting to supply the optimum aeration rate for a successful and economic composting. For this aim, vegetable–fruit wastes (VFW) were composted at various aeration rates (0.37, 0.49, 0.62, 0.74, 0.86, and 0.99 L/min kg VS) and moisture, temperature, pH, electrical conductivity, C/N, and cellulose were investigated. Moistures of the reactor that had the highest aeration were generally lower than those of the others. Reactor that had the lowest aeration reached thermophilic phase earlier than the others and stayed more days. This situation was opposite for the reactor that had the highest aeration. pH variations with aeration rates were not significant. Although electrical conductivity did not differ significantly with aeration rates, at the beginning of the thermophilic phase it generally increased with the increase in aeration. The highest C/N reduction was observed in the reactor that had an aeration of 0.62 L/min kg VS. The final cellulose contents were close to each other. It could be said that aeration rates used were efficient on composting of VFW. Taking the C/N into account which is the parameter of the indicator of the stabilization in composting, it could be said that the optimum aeration rate for forced aerobic composting of VFW was 0.62 L/min kg VS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号