首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   712篇
  免费   14篇
  国内免费   2篇
测绘学   29篇
大气科学   65篇
地球物理   181篇
地质学   268篇
海洋学   64篇
天文学   92篇
综合类   5篇
自然地理   24篇
  2023年   3篇
  2020年   9篇
  2019年   7篇
  2018年   10篇
  2017年   12篇
  2016年   27篇
  2015年   19篇
  2014年   32篇
  2013年   31篇
  2012年   30篇
  2011年   43篇
  2010年   26篇
  2009年   40篇
  2008年   37篇
  2007年   25篇
  2006年   27篇
  2005年   28篇
  2004年   32篇
  2003年   19篇
  2002年   14篇
  2001年   17篇
  2000年   15篇
  1999年   15篇
  1998年   10篇
  1997年   8篇
  1996年   12篇
  1995年   12篇
  1994年   12篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   7篇
  1989年   9篇
  1988年   3篇
  1987年   9篇
  1986年   4篇
  1985年   8篇
  1984年   8篇
  1983年   12篇
  1982年   9篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1978年   5篇
  1977年   8篇
  1973年   3篇
  1972年   3篇
  1971年   5篇
  1969年   3篇
  1966年   3篇
排序方式: 共有728条查询结果,搜索用时 31 毫秒
101.
Mineralogy and Petrology - Potassic-richterite, ideally AKB(NaCa)CMg5TSi8O22W(OH)2, is recognized as a valid member of the amphibole supergroup (IMA-CNMNC 2017–102). Type material is from the...  相似文献   
102.
We analyse data obtained by different ground-based video camera systems during the 1999 Leonid meteor storm. We observe similar activity profiles at nearby observing sites, but significant differences over distances in the order of 4,000 km. The main peak occured at 02:03 UT (λ=235.286, J2000, corrected for the time of the topocentric stream encounter). At the Iberian peninsula quasi-periodic activity fluctuations with a period of about 7 min were recorded. The camera in Jordan detected a broad plateau of activity at 01:39–01:53 UT, but no periodic variations. The Leonid brightness distribution derived from all cameras shows a lack of faint meteors with a turning point close to +3m, which corresponds to meteoroids of approximately 10-3 g. We find a pin-point radiant at αalpha=153.65 ±0.1, δ=21.80 ±0. (λ=235.290). The radiant positionis identical before and after the storm, and also during the storm no driftis observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
103.
104.
The 720-m-thick succession of the Middle Triassic Latemàr Massif (Dolomites, Italy) was used to reconstruct the lagoonal facies architecture of a small atoll-like carbonate platform. Facies analysis of the lagoonal sediments yields a bathymetric interpretation of the lateral facies variations, which reflect a syndepositional palaeorelief. Based on tracing of lagoonal flooding surfaces, the metre-scale shallowing-upward cycles are interpreted to be of allocyclic origin. Short-term sea-level changes led to subaerial exposure of wide parts of the marginal zone, resulting in the development of a tepee belt of varying width. Occasional emergence of the entire lagoon produced lagoon-wide decimetre-thick red exposure horizons. The supratidal tepee belt in the backreef area represented the zone of maximum elevation, which circumscribed the sub- to peritidal lagoonal interior during most of the platform's development. This tepee rim, the subtidal reef and a sub- to peritidal transition zone in between stabilized the platform margin. The asymmetric width of facies belts within individual metre-scale cycles was caused by redistribution processes that reflect palaeowinds and storm paths from the present-day south and west. The overall succession shows stratigraphic changes on a scale of tens of metres from a basal subtidal unit, overlain by three tepee-rich intervals, separated by tepee-poor units composed of subtidal to peritidal facies. This stacking pattern reflects two third-order sequences during the late Anisian to early middle Ladinian.  相似文献   
105.
High-resolution seismic studies of gas hydrates west of Svalbard   总被引:2,自引:0,他引:2  
 A strong bottom-simulating reflection (BSR) with high-amplitude variations is detectable in high- resolution reflection seismic profiles west of Svalbard. Above the BSR, anomalously high velocities up to 1840 m/s, calculated from high-frequency ocean-bottom hydrophone (HF-OBH) data, indicate the existence of gas-hydrated sediments. Below the BSR, a low-velocity layer, interpreted as gas-bearing sediments, shows thickness variations from 12 to 25 m. In addition, two other low-velocity layers clearly containing free gas are detected within the classic hydrate stability zone (HSZ) where, a theoretical viewpoint, free gas cannot exist. Received: 6 August 1997 / Revision received: 26 January 1998  相似文献   
106.
Near real-time monitoring of hydrological drought requires the implementation of an index capable of capturing the dynamic nature of the phenomenon. Starting from a dataset of modelled daily streamflow data, a low-flow index was developed based on the total water deficit of the discharge values below a certain threshold. In order to account for a range of hydrological regimes, a daily 95th percentile threshold was adopted, which was computed by means of a 31-day moving window. The observed historical total water deficits were statistically fitted by means of the exponential distribution and the corresponding probability values were used as a measure of hydrological drought severity. This approach has the advantage that it directly exploits daily streamflow values, as well as allowing a near real-time update of the index at regular time steps (i.e. 10 days, or dekad). The proposed approach was implemented on discharge data simulated by the LISFLOOD model over Europe during the period 1995–2015; its reliability was tested on four case studies found within the European drought reference database, as well as against the most recent summer drought observed in Central Europe in 2015. These validations, even if only qualitative, highlighted the ability of the index to capture the timing (starting date and duration) of the main historical hydrological drought events, and its good performance in comparison with the commonly used standardized runoff index (SRI). Additionally, the spatial evolution of the most recent event was captured well in a simulated near real-time test case, suggesting the suitability of the index for operational implementation within the European Drought Observatory.  相似文献   
107.
Little is known about water in nominally anhydrous minerals of orogenic garnet peridotite and enclosed metabasic rocks. This study is focused on peridotite-hosted eclogite and garnetite (metarodingite) from the Erzgebirge (EG), Germany, and the Lepontine Alps (LA), Switzerland. Newly discovered, peridotite-hosted eclogite in the Erzgebirge occurs in the same ultra-high pressure (UHP) unit as gneiss-hosted coesite eclogite, from which it is petrologically indistinguishable. Garnet is present in all mafic and ultramafic high pressure (HP) rocks providing for an ideal proxy to compare the H2O content of the different rock types. Garnet composition is very similar in EG and LA samples and depends on the rock type. Garnet from garnetite, compared to eclogite, contains more CaO (garnetite: 10.5–16.5 wt%; eclogite: 5–11 wt%) and is also characterized by an anomalous REE distribution. In contrast, the infrared (IR) spectra of garnet from both rock types reveal the same OH absorption bands that are also identical to those of previously studied peridotitic garnet from the same locations. Two groups of IR bands, SW I (3,650 ± 10 cm−1) and SW II (3,570–3,630 cm−1) are ascribed to structural hydroxyl (colloquially ‘water’). A third, broad band is present in about half of the analysed garnet domains and related to molecular water (MW) in submicroscopic fluid inclusions. The primary content of structural H2O, preserved in garnet domains without fluid inclusions (and MW bands), varies systematically—depending on both the location and the rock type. Garnet from EG rocks contains more water compared to LA samples, and garnet from garnetite (EG: 121–241 wt.ppm H2O; LA: 23–46 wt.ppm) hosts more water than eclogitic garnet (EG: 84 wt.ppm; LA: 4–11 wt.ppm). Higher contents of structural water (SW) are observed in domains with molecular water, in which the SW II band (being not restricted to HP conditions) is simultaneously enhanced. This implies that fluid influx during decompression not only led to fluid inclusions but also favoured the uptake of secondary SW. The results signify that garnet from all EG and LA samples was originally H2O-undersaturated. Combining the data from eclogite, garnetite and previously studied peridotite, H2O and CaO are positively correlated, pointing to the same degree of H2O-undersaturation at peak metamorphism in all rock types. This ubiquitous water-deficiency cannot be reconciled with the derivation of any of these rocks from the lowermost part of the mantle wedge that was in contact with the subducting plate. This agrees with the previously inferred abyssal origin for part of the rocks from the LA (Cima di Gagnone). A similar origin has to be invoked for the Erzgebirge UHP unit. We suggest that all mafic and ultramafic rocks of this unit not only shared the same metamorphic evolution but also a common protolith origin, most probably on the ocean floor. This inference is supported by the presence of peridotite-hosted garnetite, representing metamorphosed rodingite.  相似文献   
108.
We investigated two ‘gap-filler’ methods based on GPS-derived low-degree surface loading variations (GPS-I and GPS-C) and a more simple method (REF-S) which extends a seasonal harmonic variation into the expected Gravity Recovery and Climate Experiment (GRACE) mission gap. We simulated two mission gaps in a reference solution (REF), which is derived from a joint inversion of GRACE (RL05) data, GPS-derived surface loading and simulated ocean bottom pressure. The GPS-I and GPS-C methods both have a new type of constraint applied to mitigate the lack of GPS station network coverage over the ocean. To obtain the GPS-C solution, the GPS-I method is adjusted such that it fits the reference solution better in a 1.5 year overlapping period outside of the gap. As can be expected, the GPS-I and GPS-C solutions contain larger errors compared to the reference solution, which is heavily constrained by GRACE. Within the simulated gaps, the GPS-C solution generally fits the reference solution better compared to the GPS-I method, both in terms of spherical harmonic loading coefficients and in terms of selected basin-averaged hydrological mass variations. Depending on the basin, the RMS-error of the water storage variations (scaled for leakage effects) ranges between 1.6 cm (Yukon) and 15.3 cm (Orinoco). In terms of noise level, the seasonal gap-filler method (REF-S) even outperforms the GPS-I and GPS-C methods, which are still affected by spatial aliasing problems. However, it must be noted that the REF-S method cannot be used beyond the study of simple harmonic seasonal variations.  相似文献   
109.
Regional gravity field modeling using free-positioned point masses   总被引:1,自引:0,他引:1  
A two-step free-positioned point mass method is used for regional gravity field modeling together with the remove-compute-restore (RCR) technique. The Quasi-Newton algorithm (L-BFGS-B) is implemented to solve the nonlinear problem with bound constraints in the first step, while in the second step the magnitudes of the point masses are re-adjusted with known positions in the least-squares sense. In order to reach a good representation of the gravity field, a number of parameter sets have to be defined carefully before the computations. The effects of four important parameter sets (depth limits, number of point masses, original/reduced basis functions and optimization directions) are investigated for regional gravity field modeling based on two numerical test cases with synthetic and real data. The results show that the selection of the initial depth and depth limits is of most importance. The number of point masses for obtaining a good fit is affected by the data distribution, while a dependency on the data variability (signal variation) is negligible. Long-wavelength errors in the predicted height anomalies can be reduced significantly by using reduced basis functions, and the radial-direction optimization proves to be stable and reliable for regular and irregular data scenarios. If the parameter sets are defined properly, the solutions are similar to the ones computed by least-squares collocation (LSC), but require fewer unknowns than LSC.  相似文献   
110.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft completed three flybys of Mercury in 2008–2009. During the first and third of those flybys, MESSENGER passed behind the planet from the perspective of Earth, occulting the radio-frequency (RF) transmissions. The occultation start and end times, recovered with 0.1 s accuracy or better by fitting edge-diffraction patterns to the RF power history, are used to estimate Mercury's radius at the tangent point of the RF path. To relate the measured radius to the planet shape, we evaluate local topography using images to identify the high-elevation feature that defines the RF path or using altimeter data to quantify surface roughness. Radius measurements are accurate to 150 m, and uncertainty in the average radius of the surrounding terrain, after adjustments are made from the local high at the tangent point of the RF path, is 350 m. The results are consistent with Mercury's equatorial shape as inferred from observations by the Mercury Laser Altimeter and ground-based radar. The three independent estimates of radius from occultation events collectively yield a mean radius for Mercury of 2439.2±0.5 km.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号