首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   8篇
  国内免费   1篇
测绘学   1篇
大气科学   15篇
地球物理   20篇
地质学   58篇
海洋学   5篇
天文学   73篇
自然地理   8篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   9篇
  2010年   7篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   15篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   10篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   5篇
  1972年   3篇
  1971年   5篇
  1970年   2篇
排序方式: 共有180条查询结果,搜索用时 406 毫秒
51.
This paper describes the performance of the Fully Depleted pn-junction CCD (pn-CCD) system, developed for ESA's XMM-satellite mission for soft x-ray imaging and spectroscopy in the single photon counting mode in the 100 eV to 10 keV photon range. The 58 mm x 60 mm large pn-CCD array, designed and fabricated at the Semiconductor Lab (Halbleiterlabor) of the Max-Planck-Institut, uses pn-junctions for registers and as backside structure. This concept naturally enables full depletion of the detector volume independent of the silicon wafer's resistivity and thickness, and as such make it an efficient detector for the x-ray region and the infrared. For high detection efficiency in the soft x-ray region and UV, an ultrathin pn-CCD backside deadlayer has been realized. Each pn-CCD-channel is equipped with its own on-chip JFET amplifier which, in combination with the CAMEX-amplifier and multiplexing chip, facilitates parallel readout and fast data rate: the cooled pn-CCD system can be read out at a data rate up to 3 MHz with an electronic noise floor of ENC < 5 e-.  相似文献   
52.
Over 90 years the beginning of spawning time of the whitefishCoregonus lavaretus of Lake Constance fluctuated in a wide range. A cycle of about 11 years is observed. Correlations of spawning time with sunspot activity (R), temperature, and age of spawners are found. Growth of the fishes in the first year of life correlates positively with R and year-class strength; growth in the second year correlates negatively with year-class strength and standing stock. It is assumed that the later the growing season ends the later the spawning season sets in.  相似文献   
53.
We report new visual and 20-μm photometry obtained when Hektor was seen nearly along its rotation axis. The visual amplitude was near its minimum, only 0.06 mag, confirming the Dunlap-Gehrels (1969) rotation model. The new observations confirm and refine the large size and low albedo assigned by Cruikshank (1977) from observations of the opposite rotation pole. The albedo of this pole is found to be pv = 0.022 ± 0.003, overlapping the uncertainty of Cruikshank's 0.03 value for the opposite pole. The low albedo makes Hektor roughly three times bigger than estimates of a few years ago. The light variations are interpreted as due to elongated shape. If this is correct, Hektor is both the largest and most elongated known Trojan, as well as being the most elongated known asteroid of its size. From considerations of Trojans' peculiar properties, we propose that Hektor is a somewhat dumbbell shaped object roughly 150 × 300 km in size, resulting from partial coalescence of two primitive spheroidal planetesimals during a relatively low-speed collision in the Trojan Lagrangian cloud, with energy too low for complete disruption. Calculations supporting this model indicate that Trojans may be less altered by collisions than belt asteroids. Observations in 1979 and 1980 can help test this model. A note added on July 17, 1978 relates our result to recent evidence of possible binary asteroid pairs, which may also arise from early low-velocity asteroid-asteroid interactions.  相似文献   
54.
55.
William K. Hartmann 《Icarus》1976,27(4):553-559
Significant fractions of each planet's late-accreted mass originated not at its own distance from the Sun, but from a neighboring planet's orbit, according to results that follow from calculations by Wetherill (1975). “Late-accreted” refers to a loosely defined period after planets acquired most of their present mass. In an idealized model, Mercury, Venus, Earth, and Mars received 47, 45, 37, and 52% of their late-accreted mass from planetesimals formed closer to other planets. Resulting compositional anomalies in outer parts of early planets could be significant; atmospheric tests of Lewis's predicted S deficiency on Venus may be inconclusive.The Moon's orbit around Earth puts it in a special category: sorting occurs between Moon-impacting and Earth-impacting material according to approach velocity. In the above model, the moon receives 60% of its late-accreted mass from planetesimals formed near Venus' orbit. Distant planetesimals could be perturbed into the Earth-Moon system and cause major changes in the Moon's composition with only minor effect on Earth. The entire lunar bulk composition anomaly could be explained by plausible reservoirs of distant low-density material.  相似文献   
56.
57.
Abstract— The hypothesis of a lunar cataclysmic cratering episode between 3.8 and 3.9 Gyr ago lacks proof. Its strongest form proposes no cratering before about 4.0 Gyr, followed by catastrophic formation of most lunar craters and basins in >200 Myr. The premise that “zero impact melts implies zero impacts” is disproved by data from asteroids, on which early collisions clearly occurred, but from which early impact melts are scarce. Plausible cataclysm models imply that any cataclysm should have affected the whole inner solar system, but among available lunar and asteroid impact melt and impact age resetting data, a narrow, strong 3.8–3.9 Gyr spike in ages is seen only in the region sampled by Apollo/Luna. Reported lunar meteorite data do not show the spike. Asteroid data show a broader, milder peak, spreading from about 4.2 to 3.5 Gyr. These data suggest either that the spike in Apollo impact melt ages is associated with unique lunar front side events, or that the lunar meteorites data represent different kinds of events than the Apollo/Luna data. Here, we develop an alternate “megaregolith evolution” hypothesis to explain these data. In this hypothesis, early impact melts are absent not because there were no impacts, but because the high rate of early impacts led to their pulverization. The model estimates survival halflives of most lunar impact melts prior to 4.1 Gyr at >100 Myr. After a certain time, Tcritical ?4.0 Gyr, impact melts began to survive to the present. The age distribution differences among impact melts and plutonic rocks are controlled by, and hold clues to, the history of regolith evolution and the relative depths of sequestration of impact melts versus plutonic rocks, both among lunar and asteroidal samples. Both the “zero cratering, then cataclysm” hypothesis and the “megaregolith evolution” hypothesis require further testing, especially with lunar meteorite impact melt studies.  相似文献   
58.
In three field campaigns between the years 2000 and 2004 geophysical measurements were conducted in the Ejina Basin, NW China. Research work in the year 2004, which is described in this paper, was concentrated on the Gurinai Structure (101°25′E, 41°N) situated in the southeastern part of the Ejina Basin in transition to the dune fields of the Badain Jaran Shamo. On satellite images the Gurinai Structure can be identified by two almost 100 km long, subparallel, N–S-striking lineaments, which may indicate tectonic deformations of late Quaternary sediments. To get a coherent picture of the structure a geophysical survey employing three electromagnetic methods – magnetotellurics (MT), transient electromagnetics (TEM), and geoelectrics (DC) – has been conducted to map the subsurface resistivity at different depth scales.The geophysical data interpretation for shallow and intermediate depth down to a few hundred meters links the subsurface distribution of electric resistivity to geomorphological units known from field work in reference with satellite images. The westerly lineament of the Gurinai Structure coincides with a subvertical change in electric resistivity. Together with geomorphological indications from fieldwork and the analysis of elevation data (SRTM), a tectonic deformation of unconsolidated sediments along a fault with an extensional component is interpreted. In the central and eastern part of the Gurinai Structure a shallow resistive subsurface layer can be traced into the first dunes of the Badain Jaran Shamo. This resistive subsurface layer is linked to the presence of fresh water, indicating infiltration from the dune field. Also, in the eastern part of the Gurinai Structure a resistive, approximately ENE-striking feature can be seen at intermediate depth, which is interpreted as a crystalline basement ridge. Towards the southern margin of the Gurinai Structure a trough-shaped unit with low resistivities and a thickness of about 1 km is identified and can be explained by a sediment package saturated with fluids of high salinity or substantial amounts of clay. The strike direction of the structure can be connected to the regional pattern of tectonic faults and seismicity.The interpretation of electromagnetic data at various depth scales contributes to the general understanding of the Ejina Basin's buildup and tectonic setting in the vicinity of the Gurinai Structure.  相似文献   
59.
Mariner 9 pictures indicate that the surface of Mars has been shaped by impact, volcanic, tectonic, erosional and depositional activity. The moonlike cratered terrain, identified as the dominant surface unit from the Mariner 6 and 7 flyby data, has proven to be less typical of Mars than previously believed, although extensive in the mid- and high-latitude regions of the southern hemisphere. Martian craters are highly modified but their size-frequency distribution and morphology suggest that most were formed by impact. Circular basins encompassed by rugged terrain and filled with smooth plains material are recognized. These structures, like the craters, are more modified than corresponding features on the Moon and they exercise a less dominant influence on the regional geology. Smooth plains with few visible craters fill the large basins and the floors of larger craters; they also occupy large parts of the northern hemisphere where the plains lap against higher landforms. The middle northern latitudes of Mars from 90 to 150† longitude contain at least four large shield volcanoes each of which is about twice as massive as the largest on Earth. Steep-sided domes with summit craters and large, fresh-appearing volcanic craters with smooth rims are also present in this region. Multiple flow structures, ridges with lobate flanks, chain craters, and sinuous rilles occur in all regions, suggesting widespread volcanism. Evidence for tectonic activity postdating formation of the cratered terrain and some of the plains units is abundant in the equatorial area from 0 to 120° longitude.Some regions exhibit a complex semiradial array of graben that suggest doming and stretching of the surface. Others contain intensity faulted terrain with broader, deeper graben separated by a complex mosaic of flat-topped blocks. An east-west-trending canyon system about 100–200 km wide and about 2500 km long extends through the Coprates-Eos region. The canyons have gullied walls indicative of extensive headward erosion since their initial formation. Regionally depressed areas called chaotic terrain consist of intricately broken and jumbled blocks and appear to result from breaking up and slumping of older geologic units. Compressional features have not been identified in any of the pictures analyzed to data. Plumose light and dark surface markings can be explained by eolian transport. Mariner 9 has thus revealed that Mars is a complex planet with its own distinctive geologic history and that it is less primitive than the Moon.  相似文献   
60.
This paper discusses formation of pathological cases of crater morphology due to interaction of craters with molten lavas. Terrestrial observations of such a process are discussed. In lunar maria, a number of small impact craters (D < 10 km) may have been covered by thin layers of fluid lavas, or formed in molten lava. Some specific lunar examples are discussed, including unusual shallow rings resembling experimental craters deformed by isostatic filling.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号