首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79207篇
  免费   1163篇
  国内免费   1467篇
测绘学   2875篇
大气科学   6120篇
地球物理   14978篇
地质学   31053篇
海洋学   6023篇
天文学   14664篇
综合类   2321篇
自然地理   3803篇
  2022年   382篇
  2021年   678篇
  2020年   712篇
  2019年   747篇
  2018年   6125篇
  2017年   5343篇
  2016年   4480篇
  2015年   1312篇
  2014年   1985篇
  2013年   3089篇
  2012年   2828篇
  2011年   4984篇
  2010年   4071篇
  2009年   4941篇
  2008年   4165篇
  2007年   4608篇
  2006年   2332篇
  2005年   1881篇
  2004年   2065篇
  2003年   1976篇
  2002年   1772篇
  2001年   1402篇
  2000年   1325篇
  1999年   1065篇
  1998年   1119篇
  1997年   996篇
  1996年   779篇
  1995年   832篇
  1994年   734篇
  1993年   628篇
  1992年   607篇
  1991年   612篇
  1990年   651篇
  1989年   514篇
  1988年   521篇
  1987年   550篇
  1986年   496篇
  1985年   642篇
  1984年   706篇
  1983年   635篇
  1982年   590篇
  1981年   553篇
  1980年   517篇
  1979年   497篇
  1978年   504篇
  1977年   395篇
  1976年   376篇
  1975年   397篇
  1974年   350篇
  1973年   385篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Primary production in the eastern tropical Pacific: A review   总被引:2,自引:12,他引:2  
The eastern tropical Pacific includes 28 million km2 of ocean between 23.5°N and S and Central/South America and 140°W, and contains the eastern and equatorial branches of the north and South Pacific subtropical gyres plus two equatorial and two coastal countercurrents. Spatial patterns of primary production are in general determined by supply of macronutrients (nitrate, phosphate) from below the thermocline. Where the thermocline is shallow and intersects the lighted euphotic zone, biological production is enhanced. In the eastern tropical Pacific thermocline depth is controlled by three interrelated processes: a basin-scale east/west thermocline tilt, a basin-scale thermocline shoaling at the gyre margins, and local wind-driven upwelling. These processes regulate supply of nutrient-rich subsurface waters to the euphotic zone, and on their basis we have divided the eastern tropical Pacific into seven main regions. Primary production and its physical and chemical controls are described for each.Enhanced rates of macronutrient supply maintains levels of primary production in the eastern tropical Pacific above those of the oligotrophic subtropical gyres to the north and south. On the other hand lack of the micronutrient iron limits phytoplankton growth (and nitrogen fixation) over large portions of the open-ocean eastern tropical Pacific, depressing rates of primary production and resulting in the so-called high nitrate-low chlorophyll condition. Very high rates of primary production can occur in those coastal areas where both macronutrients and iron are supplied in abundance to surface waters. In these eutrophic coastal areas large phytoplankton cells dominate; conversely, in the open-ocean small cells are dominant. In a ‘shadow zone’ between the subtropical gyres with limited subsurface ventilation, enough production sinks and decays to produce anoxic and denitrified waters which spread beneath very large parts of the eastern tropical Pacific.Seasonal cycles are weak over much of the open-ocean eastern tropical Pacific, although several eutrophic coastal areas do exhibit substantial seasonality. The ENSO fluctuation, however, is an exceedingly important source of interannual variability in this region. El Niño in general results in a depressed thermocline and thus reduced rates of macronutrient supply and primary production. The multi-decadal PDO is likely also an important source of variability, with the ‘El Viejo’ phase of the PDO resulting in warmer and lower nutrient and productivity conditions similar to El Niño.On average the eastern tropical Pacific is moderately productive and, relative to Pacific and global means, its productivity and area are roughly equivalent. For example, it occupies about 18% of the Pacific Ocean by area and accounts for 22–23% of its productivity. Similarly, it occupies about 9% of the global ocean and accounts for 10% of its productivity. While representative, these average values obscure very substantial spatial and temporal variability that characterizes the dynamics of this tropical ocean.  相似文献   
992.
At present, the barotropic buoyant stability parameter has been derived from a vertical virtual displacement of a water parcel. The barotropic inertial stability parameter in the eccentrically cyclogeostrophic, basic current field was derived in 2003 from a horizontal cross-stream virtual displacement of a parcel. By expressing acceleration of a parcel due to a virtual displacement, which is arbitrarily sloping within a vertical section across the basic current, in terms of natural coordinates, we derived the vertical component of baroclinic buoyant stability parameter B 2 2, the horizontal component of baroclinic inertial stability parameter I 2 2, the baroclinic joint stability parameter J 2, its buoyant component B 2 and its inertial component I 2. B 2 is far greater than I 2 2, and when neglecting relative vorticity except for vertical shear, a downward convex curve of J 2 plotted against the slope of a virtual displacement follows a trend of B 2 curve. If a parcel displaces along a horizontal surface or an isopycnal surface, however, B 2 vanishes, and J 2 becomes equal to I 2. Actual parcel is apt to displace not only along the bottom slope, but also along the sea surface and an isopycnal interfacial surface, which is approximately equivalent to an isentropic surface, preferred by lateral mixing and exchange of momentum. Such actual displacement makes B 2 vanishing, and grants I 2 an important role. The present analysis of I 2 examining effects due to curvature and horizontal and vertical shear vorticities are useful in deepening our understanding of baroclinic instability in actual oceanic streams.  相似文献   
993.
I present the derivation of the Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar), which is developed for adopting a non-diagonal background error covariance matrix in nonlinear variational analyses (i.e., analyses employing a non-quadratic cost function). POpULar is based on the idea of a linear preconditioned conjugate gradient method widely adopted in ocean data assimilation systems. POpULar uses the background error covariance matrix as a preconditioner without any decomposition of the matrix. This preconditioning accelerates the convergence. Moreover, the inverse of the matrix is not required. POpULar therefore allows us easily to handle the correlations among deviations of control variables (i.e., the variables which will be analyzed) from their background in nonlinear problems. In order to demonstrate the usefulness of POpULar, we illustrate two effects which are often neglected in studies of ocean data assimilation before. One is the effect of correlations among the deviations of control variables in an adjoint analysis. The other is the nonlinear effect of sea surface dynamic height calculation required when sea surface height observation is employed in a three-dimensional ocean analysis. As the results, these effects are not so small to neglect.  相似文献   
994.
The EC-funded STRATAGEM project ran from 2000 to 2003 and was a study of the Neogene evolution of the glaciated northeast Atlantic margin from Lofoten to Porcupine, an area extending over nearly 20 degrees of latitude. An extensive seismic, borehole and sample database has been used, much of it supplied by the oil industry. The main products of STRATAGEM have been an integrated, unified stratigraphic framework in the form of an atlas documenting and illustrating the detailed stratigraphy of the entire margin, and a detailed evolution model for this margin. A brief summary of the background to, and organisation of, the project is presented, together with an outline of the main objectives, the physiographic setting of the area and the database.  相似文献   
995.
Storms and shoreline retreat in the southern Gulf of St. Lawrence   总被引:1,自引:0,他引:1  
Storms play a major role in shoreline recession on transgressive coasts. In the southern Gulf of St. Lawrence (GSL), southeastern Canada, long-term relative sea-level rise off the North Shore of Prince Edward Island has averaged 0.3 m/century over the past 6000 years (>0.2 m/century over 2000 years). This has driven long-term coastal retreat at mean rates >0.5 m/a but the variance and details of coastal profile response remain poorly understood. Despite extensive sandy shores, sediment supply is limited and sand is transferred landward into multidecadal to century-scale storage in coastal dunes, barrier washover deposits, and flood-tidal delta sinks. Charlottetown tide-gauge records show mean relative sea-level rise of 3.2 mm/a (0.32 m/century) since 1911. A further rise of 0.7±0.4 m is projected over the next 100 years. When differenced from tidal predictions, the water-level data provide a 90-year record of storm-surge occurrence. Combined with wind, wave hindcast, and sea-ice data, this provides a catalogue of potentially significant coastal storms. We also document coastal impacts from three recent storms of great severity in January and October 2000 and November 2001. Digital photogrammetry (1935–1990) and shore-zone surveys (1989–2001) show large spatial and temporal variance in coastal recession rates, weakly correlated with the storm record, in part because of wave suppression or coastal protection by sea ice. Large storms cause rapid erosion from which recovery depends in part on local sand supply, but barrier volume may be conserved by washover deposition. Barrier shores with dunes show high longshore and interdecadal variance, with extensive multidecadal healing of former inlet and overwash gaps. This reflects recovery from an episode of widespread overwash prior to 1935, possibly initiated by intense storms or groups of storms in the latter half of the 19th century. With evidence from the storms of 2000–2001, this points to the importance of storm clustering on scales of weeks to years in determining erosion vulnerability, as well as the need for a long-term, large-scale perspective in assessing coastal stability. The expected acceleration in relative sea-level rise, together with projections of increasing storm intensity and greatly diminished winter ice cover in the southern GSL, implies a significant increase in coastal erosion hazards in future.  相似文献   
996.
In the present work, we generalize the results of our investigations in the field of simulation of hydrophysical and ecological processes in coastal regions of various seas and some closed basins. The developed and applied mathematical models and the results of numerical experiments are briefly analyzed.  相似文献   
997.
Abstract.  The major problem in coastal areas of developing countries is disturbance caused by anthropogenic influence. This disturbance can be quantified by analysing the distribution and composition of marine communities using uni- and multivariate techniques and the biotic index. A study of benthic macrofauna was carried out along the São Sebastião Channel, northern coast of São Paulo State, Brazil, in an area with a submarine outfall, a petroleum terminal and a commercial harbour. Sampling was undertaken seasonally, by means of a van Veen grab (0.1 m2) at 15 oceanographic stations, from November 1993 to August 1994. A total of 392 species were identified (129 Polychaeta, 127 Mollusca, 98 Crustacea, 28 Echinodermata and 10 other phyla). The sedimentary pattern recorded for the São Sebastião Channel is very heterogeneous, influenced mainly by strong wind-driven currents, and differs from nearby shelf areas. The study area could be divided into three regions based on sediment texture and fauna: one region dominated by medium and coarse sand with low values of organic carbon; a second area where pelitic fractions were dominant with high values of organic carbon and nitrogen; and a third region characterised by fine and very fine sand, presenting intermediate organic carbon values. No temporal significant variation in abundance and species composition was found, except in autumn. The use of the 'marine Biotic Coefficient' showed the same ecological trend as the faunal abundance and demonstrated that the central continental region of the channel is affected by human activities.  相似文献   
998.
Stress and deformation of offshore piles under structural and wave loading   总被引:3,自引:0,他引:3  
Various offshore structures, especially large structures such as Tension Leg Platforms (TLP), are usually supported by concrete piles as the foundation elements. The stress distribution within such a large structure is a dominant factor in the design procedure of an offshore pile. To provide a more accurate and effective design for offshore foundation systems under axial and lateral wave loads, a finite element model is employed herein to determine the stresses and displacements in a concrete pile under similar loading conditions. A parametric study is also performed to examine the effects of the stress distribution due to the changing loading conditions.  相似文献   
999.
In this study, we present seasonal changes (monthly samples from September 2001 to August 2003) in the abundance and composition of dissolved and particulate amino acids, at one station in the lower Mississippi and Pearl Rivers (LA, MS: USA). Spatial changes over a 4-day transmit from river km 390 to river mouth (Head of Passes, LA) in the Mississippi River, and a two-day downstream sampling from Jackson (MS) to Stennis Space Center (MS) were also determined. Temporal data in the lower Mississippi River showed significantly lower concentrations of dissolved combined amino acids (DCAA, 0.8 to 2.2 μM) and dissolved amino acids in high molecular weight fraction (HMW DAA, 0.2–0.4 μM) than in the Pearl River (DCAA, 1.4–4.3 μM; HMW DAA, 0.4–1.4 μM). Dissolved free amino acids (DFAA) were significantly lower than DCAA in both rivers, and displayed minimal seasonal variability. DCAA, HMW DAA, and particulate amino acids (PAA) were generally higher during high-flow periods, which may have suggested dominance in terrestrial sources. Carbon-normalized yield of PAA (%C-PAA) was generally higher during low-flow conditions and positively correlated with chlorophyll-a (chl-a), reflective of in situ sources. Downstream variability in the lower Mississippi River showed stable DCAA concentrations, a decline in PAA (from 1.06 to 0.43 μM), and a gradual increase in mole percent of non-protein amino acids (%NPAA). This likely reflected bacterial degradation of phytoplankton biomass during falling discharge. Nitrogen-normalized yield of PAA (%N-PAA) was inversely correlated with PAA (R = − 0.7, n = 48), indicative of short-term sedimentation and resuspension events. Conversely, downstream decreases in DCAA and middle-reach peaks of PAA and %N-PAA in the Pearl River, likely resulted from photochemical degradation of DOM as well as algal production during base-flow conditions. The comparisons in abundance and composition of DAA and PAA in these different river systems provides important information on in situ nitrogen and carbon cycling as related to riverine inputs of organic matter to coastal ocean.  相似文献   
1000.
The circulation of the eastern tropical Pacific: A review   总被引:5,自引:9,他引:5  
During the 1950s and 1960s, an extensive field study and interpretive effort was made by researchers, primarily at the Scripps Institution of Oceanography, to sample and understand the physical oceanography of the eastern tropical Pacific. That work was inspired by the valuable fisheries of the region, the recent discovery of the equatorial undercurrent, and the growing realization of the importance of the El Niño phenomenon. Here we review what was learned in that effort, and integrate those findings with work published since then as well as additional diagnoses based on modern data sets.Unlike the central Pacific, where the winds are nearly zonal and the ocean properties and circulation are nearly independent of longitude, the eastern tropical Pacific is distinguished by wind forcing that is strongly influenced by the topography of the American continent. Its circulation is characterized by short zonal scales, permanent eddies and significant off-equatorial upwelling. Notably, the Costa Rica Dome and a thermocline bowl to its northwest are due to winds blowing through gaps in the Central American cordillera, which imprint their signatures on the ocean through linear Sverdrup dynamics. Strong annual modulation of the gap winds and the meridional oscillation of the Intertropical Convergence Zone generates a Rossby wave, superimposed on the direct forcing, that results in a southwestward-propagating annual thermocline signal accounting for major features of observed thermocline depth variations, including that of the Costa Rica Dome, the Tehuantepec bowl, and the ridge–trough system of the North Equatorial Countercurrent (NECC). Interannual variability of sea surface temperature (SST) and altimetric sea surface height signals suggests that the strengthening of the NECC observed in the central Pacific during El Niño events continues all the way to the coast, warming SST (by zonal advection) in a wider meridional band than the equatorially trapped thermocline anomalies, and pumping equatorial water poleward along the coast.The South Equatorial Current originates as a combination of equatorial upwelling, mixing and advection from the NECC, and Peru coastal upwelling, but its sources and their variability remain unresolved. Similarly, while much of the Equatorial Undercurrent flows southeast into the Peru Undercurrent and supplies the coastal upwelling, a quantitative assessment is lacking. We are still unable to put together the eastern interconnections among the long zonal currents of the central Pacific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号