首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   5篇
  国内免费   5篇
测绘学   3篇
大气科学   26篇
地球物理   97篇
地质学   96篇
海洋学   77篇
天文学   104篇
综合类   4篇
自然地理   26篇
  2021年   4篇
  2020年   3篇
  2019年   12篇
  2018年   7篇
  2017年   10篇
  2016年   13篇
  2015年   8篇
  2014年   14篇
  2013年   16篇
  2012年   10篇
  2011年   14篇
  2010年   15篇
  2009年   21篇
  2008年   20篇
  2007年   31篇
  2006年   19篇
  2005年   13篇
  2004年   20篇
  2003年   12篇
  2002年   17篇
  2001年   13篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   9篇
  1996年   8篇
  1995年   11篇
  1994年   2篇
  1993年   8篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1988年   6篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   9篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1976年   8篇
  1975年   7篇
  1973年   8篇
  1972年   4篇
  1971年   3篇
  1969年   1篇
  1967年   1篇
排序方式: 共有433条查询结果,搜索用时 46 毫秒
61.
Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943–1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10?1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K–Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4?±?0.05 Ma.  相似文献   
62.
To investigate temporal and spatial evolution of global geomagnetic field variations from high-latitude to the equator during geomagnetic storms, we analyzed ground geomagnetic field disturbances from high latitudes to the magnetic equator. The daytime ionospheric equivalent current during the storm main phase showed that twin-vortex ionospheric currents driven by the Region 1 field-aligned currents (R1 FACs) are intensified significantly and expand to the low-latitude region of-30~ magnetic latitude. Centers of the currents were located around 70~ and 65~ in the morning and afternoon, respectively. Corresponding to intensification of the R1 FACs, an enhancement of the eastward/westward equatorial electrojet occurred at the daytime/nighttime dip equator. This signature suggests that the enhanced convection electric field penetrates to both the daytime and nighttime equa- tor. During the recovery phase, the daytime equivalent current showed that two new pairs of twin vortices, which are different from two-cell ionospheric currents driven by the R1 FACs, appear in the polar cap and mid latitude. The former led to enhanced north- ward Bz (NBZ) FACs driven by lobe reconnection tailward of the cusps, owing to the northward interplanetary magnetic field (IMF). The latter was generated by enhanced Region 2 field-aligned currents (R2 FACs). Associated with these magnetic field variations in the mid-latitudes and polar cap, the equatorial magnetic field variation showed a strongly negative signature, produced by the westward equatorial electrojet current caused by the dusk-to-dawn electric field.  相似文献   
63.
The inner part of the Ariake Sea is one of the most productive estuarine systems in Japan. To examine potential food items for estuarine organisms, we conducted monthly observations of the dynamics of particulate organic matter along the macrotidal Chikugo River estuary in 2005 and 2006. In the neighboring macrotidal Midori and Kuma River estuaries, comparative observations were made. High turbidity and strong vertical mixing were observed only at low salinities (<10) in the Chikugo River estuary. In contrast, the Midori and Kuma River estuaries were characterized by less turbid and less mixed waters. Concentrations of particulate organic carbon often exceeded 5?mg?l?1 in or close to the estuarine turbidity maximum (ETM) of the Chikugo River estuary. However, such high concentrations were rarely observed in the other two estuaries. The observed differences could be attributable to different hydrodynamic processes related to the different lengths of tidal reaches: 23, 8, and 6?km in the Chikugo, Midori, and Kuma Rivers, respectively. In the Chikugo River estuary, spatiotemporal changes of chlorophyll a suggested that phytoplankton occurred abundantly up- and/or downstream from the ETM especially during the warm season. In contrast, pheophytin (i.e., plant detritus) always accumulated in or close to the ETM. Carbon stable isotope ratios and carbon to nitrogen ratios indicated that the plant detritus was derived from phytoplankton and terrestrial plants. The Chikugo River estuary has a high potential to support the production of estuarine organisms through abundant plant detritus in the well-developed ETM all the year round.  相似文献   
64.
Achieving an understanding of the nature of monogenetic volcanic fields depends on identification of the spatial and temporal patterns of volcanism in these fields, and their relationships to structures mapped in the shallow crust and inferred in the deep crust and mantle through interpretation of geophysical data. We investigate the spatial and temporal distributions of volcanism in the Abu Monogenetic Volcano Group, Southwest Japan, and compare these distributions to fault and seismic data in the brittle crust, and P-wave tomography of the crust and upper mantle. Essential characteristics of the volcano distribution are extracted by a nonparametric kernel method using an algorithm to estimate anisotropic bandwidth. Overall, E-W elongate smooth modes in spatial density are identified that are consistent with the spatial extent of P-wave velocity anomalies in the lower crust and upper mantle, supporting the idea that the spatial density map of volcanic vents reflects the geometry of a mantle diapir. While the number of basalt eruptions decreased after 0.2 Ma, andesite eruptions increased and overall volume eruption rate is approximately steady-state. Estimated basalt supply to the lower crust is also constant. This observation and the spatial distribution of volcanic vents suggest stability of magma productivity and essentially constant two-dimensional size of the source mantle diapir since 0.46 Ma.  相似文献   
65.
An overview is presented of a 4-year study by the Äspö Task Force on Modelling of Groundwater Flow and Transport of Solutes, whose primary aim was to build a bridge between the approaches used for site characterisation (SC) and performance assessment (PA) associated with nuclear waste repositories. Eleven modelling teams representing six national radioactive waste organisations participated in eight modelling exercises whose objectives were: to assess simplifications used in PA models; to determine how, and to what extent, experimental tracer and flow experiments can constrain the range of parameters used in PA models; to support the design of SC programmes to assure that the results have optimal value for PA calculations; and to improve the understanding of site-specific flow and transport behaviour at different scales using SC models. The modelling tasks were concerned with flow and transport through single and multiple near-planar features on SC and PA timescales, including the diffusion of solutes into multiple immobile zones adjacent to fracture surfaces. In general, tracer tests provide only limited quantitative constraints on retention parameter values relevant to PA but nevertheless provide insight about the flow and transport processes, which is a key element of the bridge between SC and PA.  相似文献   
66.
Gas was sampled regionally, including by drilling into faults, in the South Kanto gas-field around Tokyo Bay, Japan. Gas samples were collected from cores in a gas sampling container immediately after drilling. A value of δ13C1 = −44.3‰ was obtained for gas in the container and δ13C1 = −36.3‰ for seeping gas in a fault zone. However, typical CH4 in this dissolved-in-water gas-field is mainly depleted in 13C, and δ13C1 values range from −66‰ to −68‰ owing to microbial degradation of organic material. 13C-rich CH4 is so far uncommon in the South Kanto gas-field. Seepages were observed from the surface along the north–south fault zone. The natural gas is stored below the sandstone layer by impermeable mudstone underlying the boundary at a depth of 30 m. Gas seepages were not observed below a depth of 40 m. Gas rises along the fault zone dissolved-in-groundwater up to the shallow region and then separates from the groundwater. 13C-rich CH4 (adsorbed CH4) was found to have desorbed from drilled mudstone core samples taken at depths of 1400–1900 m in the main gas-production strata. Similarly, 13C-rich CH4 was found in black shale overlying the oceanic crust forming part of a sedimentary accretionary prism underling the Tokyo region. It also appears in the spring-water of spa wells, originating at a depth of 1200–1500 m along a tectonic line. Methane generated by microbial degradation of organic material through CO2 reduction in the South Kanto gas-field mainly originates as biogenic gas mixed with a small amount of 13C-rich CH4, derived from thermogenic gas without oil components in strata. It is assumed that 12C-rich CH4 is easily detached from core or pore water through gas production, whereas 13C-rich CH4 is strongly adsorbed on the surfaces of particles. The 13C-rich CH4 rises along the major tectonic line or up the 50 m wide normal fault zone from relatively deep sources in the Kanto region.  相似文献   
67.
This paper reports for the first time the detection and occurrence of nitroarenes (NPAHs) in marine organisms. Mussels and oysters collected from Osaka Bay, Japan, had total NPAHs concentrations that ranged from 2380 to 24,688 pg/g dry and 2672 to 25,961 pg/g dry, respectively. Relatively higher concentrations were detected in sampling sites located near the central district and suburbs of Osaka City implying that the most probable sources of NPAHs in the two bivalves are exhaust gases and smokes emitted by automobiles and industrial plants. Bivalves had relatively higher residues of 1-nitronaphthalene, 2-nitronaphthalene, 3-nitrophenanthrene, and 9-nitrophenanthrenes. Residues of 2-nitrofluorene, 1-nitropyrene, 4-nitropyrenes, and 6-nitrochrysene were much lower compared to nitronaphthalenes and nitrophenanthrenes. Inter-species differences was only observed for 2-nitronaphthalene with oysters exhibiting significantly higher residues than mussels.  相似文献   
68.
We summarize chemical characteristics of chromian spinels from ultramafic to mafic plutonic rocks (lherzolites, harzburgites, dunites, wehrlites, troctolites, olivine gabbros) with regard to three tectonic settings (mid‐ocean ridge, arc, oceanic hotspot). The chemical range of spinels is distinguishable between the three settings in terms of Cr# (= Cr/(Cr + Al) atomic ratio) and Ti content. The relationships are almost parallel with those of chromian spinels in volcanic rocks, but the Ti content is slightly lower in plutonics than in volcanics at a given tectonic environment. The Cr# of spinels in plutonic rocks is highly diverse; its ranges overlap between the three settings, but extend to higher values (up to 0.8) in arc and oceanic hotspot environments. The Ti content of spinels in plutonics increases, for a given lithology, from the arc to oceanic hotspot settings by mid‐ocean ridge on average. This chemical diversity is consistent with that of erupted magmas from the three settings. If we systematically know the chemistry of chromian spinels from a series of plutonic rocks, we can estimate their tectonic environments of formation. The spinel chemistry is especially useful in dunitic rocks, in which chromian spinel is the only discriminating mineral. Applying this, discordant dunites cutting mantle peridotites were possibly precipitated from arc‐related magmas in the Oman ophiolite, and from an intraplate tholeiite in the Lizard ophiolite, Cornwall.  相似文献   
69.
Methane and CO2 emissions from the two most active mud volcanoes in central Japan, Murono and Kamou (Tokamachi City, Niigata Basin), were measured in from both craters or vents (macro-seepage) and invisible exhalation from the soil (mini- and microseepage). Molecular and isotopic compositions of the released gases were also determined. Gas is thermogenic (δ13CCH4 from −32.9‰ to −36.2‰), likely associated with oil, and enrichments of 13C in CO2 (δ13CCO2 up to +28.3‰) and propane (δ13CC3H8 up to −8.6‰) suggest subsurface petroleum biodegradation. Gas source and post-genetic alteration processes did not change from 2004 to 2010. Methane flux ranged within the orders of magnitude of 101-104 g m−2 d−1 in macro-seeps, and up to 446 g m−2 d−1 from diffuse seepage. Positive CH4 fluxes from dry soil were widespread throughout the investigated areas. Total CH4 emission from Murono and Kamou were estimated to be at least 20 and 3.7 ton a−1, respectively, of which more than half was from invisible seepage surrounding the mud volcano vents. At the macro-seeps, CO2 fluxes were directly proportional to CH4 fluxes, and the volumetric ratios between CH4 flux and CO2 flux were similar to the compositional CH4/CO2 volume ratio. Macro-seep flux data, in addition to those of other 13 mud volcanoes, supported the hypothesis that molecular fractionation (increase of the “Bernard ratio” C1/(C2 + C3)) is inversely proportional to gas migration fluxes. The CH4 “emission factor” (total measured output divided by investigated seepage area) was similar to that derived in other mud volcanoes of the same size and activity. The updated global “emission-factor” data-set, now including 27 mud volcanoes from different countries, suggests that previous estimates of global CH4 emission from mud volcanoes may be significantly underestimated.  相似文献   
70.
Coastal vegetation is widely recognized to reduce tsunami damage to people and buildings, and it has been studied recently because it requires relatively little capital investment compared with artificial measures, provides human-friendly beach fronts, and enhances inter-relationships with other ecological systems. However, the tsunami caused by the Great East Japan Earthquake at 14:46 JST on March 11, 2011, with a magnitude of 9.0 and epicenter 129?km east of Sendai, broke most of the sea wall (tsunami gates, large embankments) and caused catastrophic damage to coastal forests in the Tohoku and Kanto districts of Japan. A field survey was conducted to elucidate the critical breaking condition of Japanese coastal pine trees. Tree-trunk breakage was observed when the sea embankment was washed out or when there was no sea embankment and the tree was under strong inertia force or impact force by debris. Even though the trunk bending and breaking phenomena are different, statistical analysis showed that the critical diameters for trunk bending and trunk breaking were not very different. The overturning phenomenon is a little more complex than trunk breaking because the resistive force is a function of the substrate and root anchorage. An equation to determine the critical diameters for trunk bending, trunk breaking, and overturning was derived as a function of tsunami water depth, soil-root strength, and the hydrodynamic parameter (H D ) formulated by Froude number, drag coefficient, and the ratio of impact force to drag force considering the physical mechanisms to resist the tsunami. Trunk bending and breaking were closely related to tsunami water depth and the hydrodynamic parameter (H D ), but tree overturning was found to be more site specific, and the root-soil strength greatly affected the critical value. The proposed critical diameter equation and its coefficient are useful for the design of an inland forest of pine trees that can trap large trees, cars, debris, etc., to its breaking limit. The trapping function should be utilized more in the future designs of inland forests, if possible, on embankments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号