首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   4篇
测绘学   2篇
大气科学   7篇
地球物理   20篇
地质学   45篇
海洋学   11篇
天文学   9篇
自然地理   28篇
  2024年   1篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   7篇
  1999年   4篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有122条查询结果,搜索用时 343 毫秒
31.
Macrofossil analyses were carried out on the late-glacial and early-Holocene sediments of the radiocarbon-dated master core at Kråkenes Lake, western Norway, to investigate the aquatic vegetation changes. Ranunculus sect. Batrachium and Nitella were the earliest pioneers after deglaciation ca. 12,300 14C yr BP. The Allerød vegetational succession was very slow during ca. 1000 14C yrs in a cool climate and conditions that were similar to those above tree-line in Norway today. The rapid cooling at the start of the Younger Dryas stadial caused extensive disturbance, and with the development of an active cirque glacier in the catchment, plants and animals were almost exterminated from the lake by inflow of permanently cold and turbid water. Rising temperatures caused the glacier to melt at the end of the Younger Dryas. The biotic response to the rapid warming was immediate, with pioneer Ranunculus sect. Batrachium and Nitella expanding within 1-3 decades, closely followed by other elodeids. The lake witnessed a remarkable isoetid succession, with phases dominated by Limosella aquatica, Subularia aquatica, Elatine hydropiper, Isoetes echinospora, and, later, I. lacustris. About 800 yrs into the Holocene most of the macrophytes declined. The short-lived isoetids became extinct, but other taxa probably survived vegetatively. The reasons for this decline are unknown, but are probably related to nutrient depletion in combination with other factors. About 550 yrs later, I. lacustris and Nymphaea colonised, and a stable flora and vegetation developed. This study illustrates the large and rapid changes that occurred over the first 1400 yrs of the Holocene in the macrophyte flora and vegetation in Kråkenes Lake before stability was attained, pointing to the value of a palaeoecological study in tracing aquatic successions over time, and highlighting our lack of knowledge of the underlying ecological factors responsible for such rapid and marked changes.  相似文献   
32.
The ecological implications of a Yakutian mammoth's last meal   总被引:1,自引:0,他引:1  
Part of a large male woolly mammoth (Mammuthus primigenius) was preserved in permafrost in northern Yakutia. It was radiocarbon dated to ca. 18,500 14C yr BP (ca. 22,500 cal yr BP). Dung from the lower intestine was subjected to a multiproxy array of microscopic, chemical, and molecular techniques to reconstruct the diet, the season of death, and the paleoenvironment. Pollen and plant macro-remains showed that grasses and sedges were the main food, with considerable amounts of dwarf willow twigs and a variety of herbs and mosses. Analyses of 110-bp fragments of the plastid rbcL gene amplified from DNA and of organic compounds supplemented the microscopic identifications. Fruit-bodies of dung-inhabiting Ascomycete fungi which develop after at least one week of exposure to air were found inside the intestine. Therefore the mammoth had eaten dung. It was probably mammoth dung as no bile acids were detected among the fecal biomarkers analysed. The plant assemblage and the presence of the first spring vessels of terminal tree-rings of dwarf willows indicated that the animal died in early spring. The mammoth lived in extensive cold treeless grassland vegetation interspersed with wetter, more productive meadows. The study demonstrated the paleoecological potential of several biochemical analytical techniques.  相似文献   
33.
34.
The Neogene and Quaternary sediments of the Faeroe-Shetland Channel and West Shetland shelf and slope rest upon a major regional unconformity, the Latest Oligocene Unconformity (LOU), and have been deposited through the interaction of downslope and parallel-to-slope depositional processes. The upper to middle continental slope is dominated by mass-transport deposits (debris flows), which progressively diminish downslope, and were largely generated and deposited during glacial cycles when ice sheets supplied large quantities of terrigeneous sediment to the upper slope and icebergs scoured sea-floor sediments on the outer shelf and uppermost slope. Large-scale sediment failures have also occurred on the upper slope and resulted in deposition of thick, regionally extensive mass-transport deposits on portions of the lower slope and channel floor. In contrast, large fields of migrating sediment waves and drift deposits dominate most of the middle to lower slope below 700 m water depth and represent deposition by strong contour currents of the various water masses moving northeastward and southwestward through the channel. These migrating sediment waves indicate strong northeastward current flow at water depths shallower than 700 m and strong southwestward current flow at water depths from 700 to >1,400 m. These flow directions are consistent with present-day water-mass flow through the Faeroe-Shetland Channel. The Faeroe-Shetland Channel floor is underlain by thin conformable sediments that appear to be predominantly glacial marine and hemipelagic with less common turbidites and debris flows. No evidence is observed in seismic or core data that indicates strong contour-current erosion or redistribution of sediments along the channel floor.  相似文献   
35.
Recent research suggests that those located closer to energy development are, on average, more supportive of this development. However, case studies in specific locations reveal additional nuance. In a case study of Bakken Shale residents, Junod et al. identified a “Goldilocks Zone” of unconventional oil and gas development (UOGD) acceptance—an area on the periphery of development that is “just right” because residents feel close enough to receive economic benefits but far enough away to avoid negative impacts. We explore whether this Goldilocks Zone extends nationally by combining geocoded public opinion data (N?=?23,154) with UOGD locations. Using multilevel regression modeling, we find that respondents located within 115?km of newly active UOGD are more supportive of hydraulic fracturing while those located within 115–305?km are comparatively less supportive. While we do not uncover a national-level Goldilocks Zone, our work highlights innovative approaches for examining spatial relationships in energy development opinion.  相似文献   
36.
Calc-alkaline magmatism in the south-west Ukraine occurred between 13.8 and 9.1 Ma and formed an integral part of the Neogene subduction-related post-collisional Carpathian volcanic arc. Eruptions occurred contemporaneously in two parallel arcs (here termed Outer Arc and Inner Arc) in the Ukrainian part of the Carpathians. Outer Arc rocks, mainly andesites, are characterized by LILE enrichment (e.g. K and Pb), Nb depletion, low compatible trace element abundances, high 87Sr/86Sr, high δ18O and low 143Nd/144Nd isotopic ratios (0.7085–0.7095, 7.01–8.53, 0.51230–0.51245, respectively). Inner Arc rocks are mostly dacites and rhyolites with some basaltic and andesitic lavas. They also show low compatible element abundances but have lower 87Sr/86Sr, δ18O and higher 143Nd/144Nd ratios (0.7060–0.7085, 6.15–6.64, 0.5125–0.5126, respectively) than Outer Arc rocks. Both high-Nb and low-Nb lithologies are present in the Inner Arc. Based on the LILE enrichment (especially Pb), a higher fluid flux is suggested for the Outer Arc magmas compared with those of the Inner Arc.

Combined trace element and Sr–Nd–O isotopic modelling suggests that the factors which controlled the generation and evolution of magmas were complex. Compositional differences between the Inner and Outer Arcs were produced by introduction of variable proportions of slab-derived sediments and fluids into a heterogeneous mantle wedge, and by different extents of upper crustal contamination. Degrees of magmatic fractionation also differed between the two arcs. The most primitive magmas belong to the Inner Arc. Isotopic modelling shows that they can be produced by adding 3–8% subducted terrigenous flysch sediments to the local mantle wedge source. Up to 5% upper crustal contamination has been modelled for fractionated products of the Inner Arc. The geochemical features of Outer Arc rocks suggest that they were generated from mantle wedge melts similar to the Inner Arc primitive magmas, but were strongly affected by both source enrichment and upper crustal contamination. Assimilation of 10–20% bulk upper crust is required in the AFC modelling, assuming an Inner Arc parental magma. We suggest that magmagenesis is closely related to the complex geotectonic evolution of the Carpathian area. Several tectonic and kinematic factors are significant: (1) hydration of the asthenosphere during subduction and plate rollback directly related to collisional processes; (2) thermal disturbance caused by ascent of hot asthenospheric mantle during the back-arc opening of the Pannonian Basin; (3) clockwise translational movements of the Intracarpathian terranes, which facilitated eruption of the magmas.  相似文献   

37.
ABSTRACT

In 2013, the International Association of Hydrological Sciences (IAHS) launched the hydrological decade 2013–2022 with the theme “Panta Rhei: Change in Hydrology and Society”. The decade recognizes the urgency of hydrological research to understand and predict the interactions of society and water, to support sustainable water resource use under changing climatic and environmental conditions. This paper reports on the first Panta Rhei biennium 2013–2015, providing a comprehensive resource that describes the scope and direction of Panta Rhei. We bring together the knowledge of all the Panta Rhei working groups, to summarize the most pressing research questions and how the hydrological community is progressing towards those goals. We draw out interconnections between different strands of research, and reflect on the need to take a global view on hydrology in the current era of human impacts and environmental change. Finally, we look back to the six driving science questions identified at the outset of Panta Rhei, to quantify progress towards those aims.
Editor D. Koutsoyiannis; Associate editor not assigned  相似文献   
38.
Cleaning of lake sediment samples for diatom oxygen isotope analysis   总被引:1,自引:0,他引:1  
Detrital grain contamination in a diatom sample can considerably influence the δ18Odiatom signal. In order to obtain a meaningful signal, pure samples must be used. This can be achieved via a series of cleaning stages including organic and carbonate material removal, sieving, differential settling and heavy liquid separation. The method described here works best for sediments with >20% diatom content. Based on testing various clean-up methods, we propose a sequence of four clean-up stages to produce pure diatom samples from a range of lake sediments types starting with a few grams of sediment. The diatom content and the oxygen isotope composition of the samples at each stage were measured in order to assess the effect of differential amounts of contamination. Results show that a four stage clean-up is necessary to produce clean diatom samples and that contamination by silt and clay causes lower δ18O values.  相似文献   
39.
40.
We have carried out a Pb double-spike and Lu-Hf isotope study of clinopyroxenes from spinel-facies mantle xenoliths entrained in Cenozoic intraplate continental volcanism of the French Massif Central (FMC). U-Th-Pb and Lu-Hf isotope systematics verify the existence of different lithospheric domains beneath the northern and southern FMC. Northern FMC clinopyroxenes have extreme Lu/Hf ratios and ultra-radiogenic Hf (εHf = +39.6 to +2586) that reflect ∼15-25% partial melting in Variscan times (depleted mantle model ages ∼360 Ma). Zr, Hf and Th abundances in these clinopyroxenes are low and unaffected by hydrous/carbonatitic metasomatism that overprinted LILE and light REE abundances and caused decoupling of Lu/Hf-Sm/Nd ratios and Nd-Hf isotopes (εNd = +2.1 to +91.2). Pb isotopes of northern FMC clinopyroxenes are radiogenic (206Pb/204Pb > 19), and typically more so than the host intraplate volcanic rocks. 238U/204Pb ratios range from 17 to 68, and most samples have distinctively low 232Th/238U (<1) and 232Th/204Pb (3-22). Clinopyroxenes from southern FMC lherzolites are generally marked by overall incompatible trace element enrichment including Zr, Hf and Th abundances, and have Pb isotopes that are similar to or less radiogenic than the host volcanic rocks. Hf isotope ratios are less radiogenic (εHf = +5.4 to +41.5) than northern FMC mantle and have been overprinted by silicate-melt-dominated metasomatism that affected this part of FMC mantle. Major element and Lu concentrations of clinopyroxenes from southern FMC harzburgites are broadly similar to northern FMC clinopyroxenes and suggest they experienced similar degrees of melt extraction as northern FMC mantle. 238U/204Pb (53-111) and 232Th/204Pb ratios (157-355) of enriched clinopyroxenes from the southern FMC are extreme and significantly higher than the intraplate volcanic rocks. In summary, mantle peridotites from different parts of the FMC record depletion at ∼360 Ma during Variscan subduction, followed by differing styles of enrichment. Northern FMC mantle was overprinted by a fluid/carbonatitic metasomatic agent that carried elements like U, Pb, Sr and light REE. In contrast, much of the southern FMC mantle was metasomatised by a small-degree partial silicate melt resulting in enrichment of all incompatible trace elements. The extreme mantle 238U/204Pb (northern and southern FMC), 232Th/238U (northern FMC) and 232Th/204Pb ratios (southern FMC), coupled with unremarkable present-day Pb isotope ratios, constrain the timing of enrichment. Mantle metasomatism is a young feature related to melting of the upwelling mantle responsible for Cenozoic FMC volcanism, rather than subduction-related metasomatism intimately associated with mantle depletion during the Variscan orogeny. The varying metasomatic styles relate to pre-existing variations in the thickness of the continental lithospheric lid, which controlled the extent to which upwelling mantle could ascend and melt. In the northern FMC, a thicker and more refractory lithospheric lid (?80 km) only allowed incipient degrees of melting resulting in fluid/carbonatitic metasomatism of the overlying sub-continental lithospheric mantle. The thinner lithospheric lid of the southern FMC (?70 km) allowed larger degrees of melting and resulted in silicate-melt-dominated metasomatism, and also focused the location of the volcanic fields of the FMC above this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号