首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
测绘学   2篇
大气科学   2篇
地球物理   14篇
地质学   17篇
海洋学   3篇
天文学   1篇
自然地理   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有40条查询结果,搜索用时 265 毫秒
31.
We continue the work that was initiated in (K. H. Karlsen, K.-A. Lie, and N. H. Risebro. A fast marching method for reservoir simulation. Comp. Geo., 4(2) (2000)185–206) on a marching method for simulating two-phase incompressible immiscible flow of water and oil in a porous medium. We first present an alternative derivation of the marching method that reveals a strong connection to modern streamline methods. Then, through the study of three numerical test cases we present two deficiencies: (i) the original marching algorithm does not always compute the correct solution of the underlying difference equations, and (ii) the method gives largely inaccurate arrival times in the presence of large jumps within the upwind difference stencil. As a remedy of the first problem, we present a new advancing-front method, which is faster than the original marching method and guarantees a correct solution of the underlying discrete linear system. To cure the second problem, we present two adaptive strategies that avoid the use of finite-difference stencils containing large jumps in the arrival times. The original marching method was introduced as a fast tool for simulating two-phase flow scenarios in heterogeneous formations. The new advancing-front method has limited applicability in this respect, but may rather be used as a fast and relatively accurate method for computing arrival times and derived quantities in heterogeneous media.  相似文献   
32.
33.
34.
Fluid flow in low-permeable carbonate rocks depends on the density of fractures, their interconnectivity and on the formation of fault damage zones. The present-day stress field influences the aperture hence the transmissivity of fractures whereas paleostress fields are responsible for the formation of faults and fractures. In low-permeable reservoir rocks, fault zones belong to the major targets. Before drilling, an estimate for reservoir productivity of wells drilled into the damage zone of faults is therefore required. Due to limitations in available data, a characterization of such reservoirs usually relies on the use of numerical techniques. The requirements of these mathematical models encompass a full integration of the actual fault geometry, comprising the dimension of the fault damage zone and of the fault core, and the individual population with properties of fault zones in the hanging and foot wall and the host rock. The paper presents both the technical approach to develop such a model and the property definition of heterogeneous fault zones and host rock with respect to the current stress field. The case study describes a deep geothermal reservoir in the western central Molasse Basin in southern Bavaria, Germany. Results from numerical simulations indicate that the well productivity can be enhanced along compressional fault zones if the interconnectivity of fractures is lateral caused by crossing synthetic and antithetic fractures. The model allows a deeper understanding of production tests and reservoir properties of faulted rocks.  相似文献   
35.
Sustainability and Sahelian soils: evidence from Niger   总被引:2,自引:0,他引:2  
It is difficult to produce systems for judging sustainability, despite general enthusiasm for the concept. Here we evaluate the 'capitals' formulation for sustainability, which attempts to bring together the social and the environmental dimensions of the issue, and which has gained wide currency. We concentrate our attention on the 'natural capital' element in this framework, which has apparently been seen as its least problematical component. We use data on soil erosion from a Sahelian agricultural community in Niger. Despite apparently high rates of erosion, we find it difficult to decide whether the system is sustainable (using the capitals or any other framework). It is even dubious whether sustainability is an urgent concern. We caution against imposing yet another poorly formulated set of concepts on this and similar systems.  相似文献   
36.
37.
Pyroclastic currents are catastrophic flows of gas and particles triggered by explosive volcanic eruptions. For much of their dynamics, they behave as particulate density currents and share similarities with turbidity currents. Pyroclastic currents occasionally deposit dune bedforms with peculiar lamination patterns, from what is thought to represent the dilute low concentration and fluid‐turbulence supported end member of the pyroclastic currents. This article presents a high resolution dataset of sediment plates (lacquer peels) with several closely spaced lateral profiles representing sections through single pyroclastic bedforms from the August 2006 eruption of Tungurahua (Ecuador). Most of the sedimentary features contain backset bedding and preferential stoss‐face deposition. From the ripple scale (a few centimetres) to the largest dune bedform scale (several metres in length), similar patterns of erosive‐based backset beds are evidenced. Recurrent trains of sub‐vertical truncations on the stoss side of structures reshape and steepen the bedforms. In contrast, sporadic coarse‐grained lenses and lensoidal layers flatten bedforms by filling troughs. The coarsest (clasts up to 10 cm), least sorted and massive structures still exhibit lineation patterns that follow the general backset bedding trend. The stratal architecture exhibits strong lateral variations within tens of centimetres, with very local truncations both in flow‐perpendicular and flow‐parallel directions. This study infers that the sedimentary patterns of bedforms result from four formation mechanisms: (i) differential draping; (ii) slope‐influenced saltation; (iii) truncative bursts; and (iv) granular‐based events. Whereas most of the literature makes a straightforward link between backset bedding and Froude‐supercritical flows, this interpretation is reconsidered here. Indeed, features that would be diagnostic of subcritical dunes, antidunes and ‘chute and pools’ can be found on the same horizon and in a single bedform, only laterally separated by short distances (tens of centimetres). These data stress the influence of the pulsating and highly turbulent nature of the currents and the possible role of coherent flow structures such as Görtler vortices. Backset bedding is interpreted here as a consequence of a very high sedimentation environment of weak and waning currents that interact with the pre‐existing morphology. Quantification of near‐bed flow velocities is made via comparison with wind tunnel experiments. It is estimated that shear velocities of ca 0·30 m.s?1 (equivalent to pure wind velocity of 6 to 8 m.s?1 at 10 cm above the bed) could emplace the constructive bedsets, whereas the truncative phases would result from bursts with impacting wind velocities of at least 30 to 40 m.s?1.  相似文献   
38.
Simulating the deformation of fractured media requires the coupling of different models for the deformation of fractures and the formation surrounding them. We consider a cell-centered finite-volume approach, termed the multi-point stress approximation (MPSA) method, which is developed in order to discretize coupled flow and mechanical deformation in the subsurface. Within the MPSA framework, we consider fractures as co-dimension one inclusions in the domain, with the fracture surfaces represented as line pairs in 2D (face pairs in 3D) that displace relative to each other. Fracture deformation is coupled to that of the surrounding domain through internal boundary conditions. This approach is natural within the finite-volume framework, where tractions are defined on surfaces of the grid. The MPSA method is capable of modeling deformation, considering open and closed fractures with complex and nonlinear relationships governing the displacements and tractions at the fracture surfaces. We validate our proposed approach using both problems, for which analytical solutions are available, and more complex benchmark problems, including comparison with a finite-element discretization.  相似文献   
39.
Two drill cores of the UG2 chromitite from the eastern and western Bushveld Complex were studied by whole-rock analysis, ore microscopy, SEM/Mineral Liberation Analysis (MLA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. The top and base of the UG2 main seam have the highest bulk-rock Pd and Pt concentrations. Sulfides mostly occur as aggregates of pentlandite, chalcopyrite, and rare pyrrhotite and pyrite or as individual grains associated mostly with chromite grains. In situ LA-ICP-MS analyses reveal that pentlandite carries distinctly elevated platinum-group element (PGE) contents. In contrast, pyrrhotite and chalcopyrite contain very low PGE concentrations. Pentlandite shows average maximum values of 350–1,000 ppm Pd, 200 ppm Rh, 130–175 ppm Ru, 20 ppm Os, and 150 ppm Ir, and is the principal host of Pd and Rh in the studied ores of the UG2. Mass balance calculations were conducted for samples representing the UG2 main seam of the drill core DT46, eastern Bushveld. Pentlandite consistently hosts elevated contents of the whole-rock Pd (up to 55 %) and Rh (up to 46 %), and erratic contents of Os (up to 50 %), Ir (2 to 17 %), and Ru (1–39 %). Platinum-group mineral (PGM) investigations support these mass balance results; most of the PGM are Pt-dominant such as braggite/cooperite and Pt-Fe alloys or laurite (carrying elevated concentrations of Os and Ir). Palladium and Rh-bearing PGM are rare. Both PGE concentrations and their distribution in base-metal sulfides (BMS) in the UG2 largely resemble that of the Merensky Reef, as most of the Pd and Rh are incorporated in pentlandite, whereas pyrrhotite, chalcopyrite, and pyrite are almost devoid of PGE.  相似文献   
40.
This study explores the siliciclastic Granite Wash Unit in northwestern Alberta as a potential geothermal reservoir. The approach covers regional 3D structural geological modelling of a 90 km × 70 km area based on well log and legacy 2D seismic data. The fault strike was interpreted from lineaments, which were identified with the refined trend surface analysis method. The stress state of the Granite Wash reservoirs was determined by an integrated approach of 3D fault modelling, stress ratio definition based on frictional constraints, and slip tendency analysis. The results show that the best site for a geothermal application is located in the southwestern study area, where the highest temperatures (above 70 °C) coincide with the largest thickness (above 20 m) and zones of elevated porosity and permeability. The integrated stress analysis indicates an in situ stress regime from normal to strike-slip faulting maintaining a non-critically stressed reservoir or faults therein, assuming a friction coefficient of 0.7. The granite wash reservoirs could be used for heating of greenhouses, domestic warm water provision and district heating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号