首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   4篇
  国内免费   1篇
大气科学   12篇
地球物理   42篇
地质学   79篇
海洋学   30篇
天文学   16篇
自然地理   18篇
  2023年   1篇
  2021年   3篇
  2020年   7篇
  2018年   5篇
  2017年   6篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   9篇
  2012年   7篇
  2011年   21篇
  2010年   11篇
  2009年   9篇
  2008年   12篇
  2007年   13篇
  2006年   10篇
  2005年   8篇
  2004年   12篇
  2003年   9篇
  2002年   8篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1984年   3篇
  1983年   1篇
  1978年   1篇
  1977年   2篇
  1968年   1篇
  1967年   1篇
  1957年   1篇
排序方式: 共有197条查询结果,搜索用时 62 毫秒
41.
42.
“Rotating RAdio Transients” (RRATs) are a newly discovered astronomical phenomenon, characterised by occasional brief radio bursts, with average intervals between bursts ranging from minutes to hours. The burst spacings allow identification of periodicities, which fall in the range 0.4 to 7 seconds. The RRATs thus seem to be rotating neutron stars, albeit with properties very different from the rest of the population. We here present the serendipitous detection with the Chandra X-ray Observatory of a bright point-like X-ray source coincident with one of the RRATs. We discuss the temporal and spectral properties of this X-ray emission, consider counterparts in other wavebands, and interpret these results in the context of possible explanations for the RRAT population. B.M.G. acknowledges the support of NASA through LTSA grant NAG5-13023 and of an Alfred P. Sloan Fellowship.  相似文献   
43.
Prevention of oil spill from shipping by modelling of dynamic risk   总被引:1,自引:0,他引:1  
This paper presents a new dynamic environmental risk model, with intended use within a new, dynamical approach for risk based ship traffic prioritisation. The philosophy behind this newly developed approach is that shipping risk can be reduced by directing efforts towards ships and areas that have been identified as high priority (high risk), prior to a potential accident. The risk model proposed in this paper separates itself from previous models by drawing on available information on dynamic factors and by focusing on the ship's surroundings. The model estimates the environmental risk of drift grounding accidents for oil tankers in real time and in forecast mode, combining the probability of grounding with oil spill impact on the coastline. Results show that the inherent dynamic risk introduced by an oil tanker sailing along the North Norwegian coast depends, not surprisingly, significantly upon wind and ocean currents, as well as tug position and cargo oil type. Results of this study indicate that the risk model is well suited for real time risk assessment, and effectively separates low risk and high risk situations. The model is well suited as a tool to prioritise oil tankers and coastal segments. This enables dynamic risk based positioning of tugs, using both real-time and projected risk, for effective support in case of a drifting ship situation.  相似文献   
44.
The antifouling boosting agent Irgarol 1051 is a strong inhibitor of the photosystem II (PSII) with high efficiency/toxicity towards algae. However, because some phytoplankton species are more sensitive to Irgarol than others, its persistent release into the environment could result in adverse changes in the phytoplankton community structure at heavily impacted sites such as marinas. Continuous monitoring in the Florida Keys showed Irgarol concentrations of up to 635 ngL(-1) in the canal system leading to Key Largo Harbor Marina (KLH) with a sharp decrease in concentration at stations offshore from the mouth of the canal. Preliminary phytoplankton community assessments from surface water samples collected in KLH between February and August 2004 showed changes in several phytoplankton species in concordance with the increase of the herbicide concentrations. Typical responses include an increase in the abundance of eukaryotes and Cryptomonas sp. as Irgarol concentrations increase.  相似文献   
45.
46.
Deep-fluids: Neptune meets Pluto   总被引:2,自引:0,他引:2  
  相似文献   
47.
1INTRODUCTION BARITE(BASO4)ISANEXTREMELYINSOLUBLESALT;THISAROUSESPROBLEMSINPETROLEUMINDUSTRYBECAUSE BASO4ISAPARTICULARLYINTRACTABLESCALINGAGENT.BARITE PRECIPITATIONINTHEWELLBOREENVIRONMENTGENERALLYRE QUIRESMECHANICALREMOVAL,WITHCONSIDERABLEASSOCIAT EDEXPE…  相似文献   
48.
During the Mauna Ulu flank eruption on Kilauea, Hawaii, the concentrations in the lavas of the minor elements K, P, Na and Ti, and the incompatible trace elements (analyzed by isotope dilution) K, Rb, Cs, Ba, Sr, and the REE (except Yb) decreased monotonically and linearly with the time (or date) of the eruption. At the same time, the concentrations of the major elements and of Yb, and the ratios of K/Rb, K/Cs, Ba/Rb, 87Sr/86Sr and 143Nd/144Nd remained constant. Most of the scatter in the raw concentration data is removed by a simple correction for olivine (plus chromite) fractionation previously established by Wright et al. (1975). These results are explained by simple equilibrium partial melting of a uniform source. The degree of melting increased by about 20% of the initial value during the course of the eruption. The trace element data are inverted by the method originated by Minster and Allègre (1978) and simplified by Hofmann and Feigenson (1983). The source has the following element (or isotope) ratios: K/Rb=501±7, Ba/Rb=14.0±0.5, Rb/Cs=95±7, Rb/Sr=0.0193 (+0.0045, –0.0090), (Ce/Ba)CN= 1.1±0.1, (Sr/Ba)CN=1.19 (+0.30, –0.19), 87Sr/86Sr=0.703521±0.000016, and 143Nd/144Nd=0.512966±0.000008. The REE pattern of the source has a nearly flat or slightly negative slope (=relative LREE enrichment) between Ce and Dy and a strongly positive slope between Dy and Yb. However, this relative HREE enrichment is poorly constrained by the analytical data, is highly model dependent and may not be a true source feature. The Yb concentration in the source is particularly poorly constrained because it is essentially constant in the melts. On the other hand, this special feature demonstrates that Yb must be buffered by a mineral phase with a high partition coefficient for Yb, namely garnet. The calculated clinopyroxene/garnet ratio in the source is roughly equal to one. In contrast, the source of Kohala volcano had previously been found to contain little or no garnet.  相似文献   
49.
The trace element composition of silicate inclusions in diamonds: a review   总被引:1,自引:0,他引:1  
On a global scale, peridotitic garnet inclusions in diamonds from the subcratonic lithosphere indicate an evolution from strongly sinusoidal REEN, typical for harzburgitic garnets, to mildly sinusoidal or “normal” patterns (positive slope from LREEN to MREEN, fairly flat MREEN–HREEN), typical for lherzolitic garnets. Using the Cr-number of garnet as a proxy for the bulk rock major element composition it becomes apparent that strong LREE enrichment in garnet is restricted to highly depleted lithologies, whereas flat or positive LREE–MREE slopes are limited to less depleted rocks. For lherzolitic garnet inclusions, there is a positive relation between equilibration temperature, enrichment in MREE, HREE and other HFSE (Ti, Zr, Y), and decreasing depletion in major elements. For harzburgitic garnets, relations are not linear, but it appears that lherzolite style enrichment in MREE–HREE only occurs at temperatures above 1150–1200 °C, whereas strong enrichment in Sr is absent at these high temperatures. These observations suggest a transition from melt metasomatism (typical for the lherzolitic sources) characterized by fairly unfractionated trace and major element compositions to metasomatism by CHO fluids carrying primarily incompatible trace elements. Melt and fluid metasomatism are viewed as a compositional continuum, with residual CHO fluids resulting from primary silicate or carbonate melts in the course of fractional crystallization and equilibration with lithospheric host rocks.

Eclogitic garnet inclusions show “normal” REEN patterns, with LREE at about 1× and HREE at about 30× chondritic abundance. Clinopyroxenes approximately mirror the garnet patterns, being enriched in LREE and having chondritic HREE abundances. Positive and negative Eu anomalies are observed for both garnet and clinopyroxene inclusions. Such anomalies are strong evidence for crustal precursors for the eclogitic diamond sources. The trace element composition of an “average eclogitic diamond source” based on garnet and clinopyroxene inclusions is consistent with derivation from former oceanic crust that lost about 10% of a partial melt in the garnet stability field and that subsequently experienced only minor reenrichment in the most incompatible trace elements. Based on individual diamonds, this simplistic picture becomes more complex, with evidence for both strong enrichment and depletion in LREE.

Trace element data for sublithospheric inclusions in diamonds are less abundant. REE in majoritic garnets indicate source compositions that range from being similar to lithospheric eclogitic sources to strongly LREE enriched. Lower mantle sources, assessed based on CaSi–perovskite as the principal host for REE, are not primitive in composition but show moderate to strong LREE enrichment. The bulk rock LREEN–HREEN slope cannot be determined from CaSi–perovskites alone, as garnet may be present in these shallow lower mantle sources and then would act as an important host for HREE. Positive and negative Eu anomalies are widespread in CaSi–perovskites and negative anomalies have also been observed for a majoritic garnet and a coexisting clinopyroxene inclusion. This suggests that sublithospheric diamond sources may be linked to old oceanic slabs, possibly because only former crustal rocks can provide the redox gradients necessary for diamond precipitation in an otherwise reduced sublithospheric mantle.  相似文献   

50.
Mineralium Deposita - The massive sulfide deposits of the Kristineberg area, Sweden, occur within a 2- to 3-km-thick succession of felsic volcaniclastic rocks belonging to the Skellefte Group. The...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号