首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   3篇
  国内免费   5篇
测绘学   1篇
大气科学   16篇
地球物理   25篇
地质学   44篇
海洋学   27篇
天文学   7篇
自然地理   14篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   6篇
  2015年   2篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   3篇
  2010年   5篇
  2009年   8篇
  2008年   5篇
  2007年   5篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   4篇
  1992年   3篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
41.
Long- and short-term channel changes are documented and analysed for a historically unstable reach of the River Severn at Llandinam, mid-Wales. Long-term changes (the last 150 years), reconstructed from 10 archival sources, are characterized by channel planform switching between meandering (1836–1840 and 1948–1963) and braided (1884–1903 and 1975–present) phases. Short-term changes, monitored by detailed planform surveys over a 2·5 year period, showed smaller-scale channel adjustments involving channel switching, bar accretion and channel expansion. Phases of braiding at Llandinam have been triggered by extrinsic controls, primarily flooding, but intrinsic controls (floodplain sediments, planform evolution and channel gradient) have been influential in priming the reach prior to destabilization. Flow regulation on the River Severn since 1968 has partly frozen the planform of the contemporary braid zone. Management of channel planform adjustments, where environmental change is phased in over time, must be informed by a knowledge of the potential for triggered planform switches. In addition, the effects of environmental change on fluvial systems are often historically contingent upon the state of the channel at the time of impact. © 1998 John Wiley & Sons, Ltd.  相似文献   
42.
The availability of airborne LiDAR data provides a new opportunity to overcome some of the problems associated with traditional, field‐based, geomorphological mapping such as restrictions on access and constraints of time or cost. The combination of airborne LiDAR data and GIS technology facilitates the rapid production of geomorphological maps of floodplain environments; however, unfiltered LiDAR data, which include vegetation and buildings, are currently more suitable for geomorphological mapping than data that have been filtered to remove these features. Classification of LiDAR data according to elevation in a GIS enables the user to identify and delineate geomorphological features in a manner similar to field mapping, but it is necessary to use a range of classification intervals in order to map the various types of feature that occur within a single reach. Comparison of a LiDAR‐derived geomorphological map with an independently produced field geomorphological map showed a high degree of similarity between the results of the two methods, although ground‐truthing is essential in cases where a high degree of accuracy is required. Ground‐truthing of a LiDAR‐derived geomorphological map showed that around 80% of features mapped using both methods were identified from the LiDAR data, suggesting that the method is suitable for applications such as production of base maps for use in field mapping and selection of sites for detailed investigation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
43.
Past climates provide a test of models’ ability to predict climate change. We present a comprehensive evaluation of state-of-the-art models against Last Glacial Maximum and mid-Holocene climates, using reconstructions of land and ocean climates and simulations from the Palaeoclimate Modelling and Coupled Modelling Intercomparison Projects. Newer models do not perform better than earlier versions despite higher resolution and complexity. Differences in climate sensitivity only weakly account for differences in model performance. In the glacial, models consistently underestimate land cooling (especially in winter) and overestimate ocean surface cooling (especially in the tropics). In the mid-Holocene, models generally underestimate the precipitation increase in the northern monsoon regions, and overestimate summer warming in central Eurasia. Models generally capture large-scale gradients of climate change but have more limited ability to reproduce spatial patterns. Despite these common biases, some models perform better than others.  相似文献   
44.
Transfer functions are an efficient tool for the quantitative reconstruction of past climate from low to mid‐elevation pollen sites. However, the application of existing methods to high‐altitude pollen assemblages frequently leads to unrealistic results. In the aim of understanding the causes of these biases, the standard ‘best modern analogue’ method has been applied to two high‐altitude pollen sequences to provide quantitative climate estimates for the Lateglacial and Holocene periods. Both pollen sequences (Laghi dell'Orgials, 2130 m, SW aspect and Lago delle Fate, 2240 m, E aspect) are located in the subalpine belt, on opposing sides of the St. Anna di Vinadio Valley (Italian Maritime Alps). Different results were obtained from the two sequences. The largest differences occurred in palaeotemperature reconstruction, with notable differences in both the values and trends at each site. These biases may be attributed to: (1) a lack of high elevation ‘best modern analogues’ in the database of modern samples; (2) the problem of pollen taxa that have multiple climatic significance; (3) problems related to the complexity of mountainous ecosystems, such as the phenomenon of uphill transport of tree pollen by wind. Possible improvements to the reconstruction process are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
45.
A new prediction technique based on logarithmic values is proposed to predict the maximum amplitude (R m) of a solar cycle from the preceding minimum aa geomagnetic index (aa min). The correlation between lnR m and lnaa min (r=0.92) is slightly stronger than that between R m and aa min (r=0.90). From this method, cycle 24 is predicted to have a peak size of R m(24)=81.7(1±13.2%). If the suggested error in aa (3 nT) before 1957 is corrected, the correlation coefficient between R m and aa min (r=0.94) will be slightly higher, and the peak of cycle 24 is predicted much lower, R m(24)=52.5±13.1. Therefore, the prediction of R m based on the relationship between R m and aa min depends greatly on the accurate measurement of aa.  相似文献   
46.
ABSTRACT

Socioeconomic and health analysts commonly rely on areally aggregated data, in part because government regulations on confidentiality prohibit data release at the individual level. Analytical results from areally aggregated data, however, are sensitive to the modifiable areal unit problem (MAUP). Levels of aggregation as well as the arbitrary and modifiable sizes, shapes, and arrangements of zones affect the validity and reliability of findings from analyses of areally aggregated data. MAUP, long acknowledged, remains unresolved. We present an exploratory spatial data analytical approach (ESDA) to understand the scalar effects of MAUP. To characterize relationships between data aggregation structures and spatial scales, we develop a method for statistically and visually exploring the local indicators of spatial association (LISA) exhibited between a variable and itself across varying levels of aggregation. We demonstrate our approach by analyzing the across-scale relationships of aggregated 2010 median income for the State of Pennsylvania and 2005–2009 cancer diagnosis rates for the State of New York between county–tract, tract–block group, and county–block group level US census designated enumeration units. This method for understanding the relationship between MAUP and spatial scale provides guidance to researchers in selecting the most appropriate scales to aggregate, analyze, and represent data for problem-specific analyses.  相似文献   
47.
Previous research on debris‐flow deposit structure typically reports little to no visually discernible stratigraphy. The preliminary findings presented here provide evidence for more complex internal deposit architecture with inverse grading and subunits thought to reflect individual flow surges. Ground‐penetrating radar surveys, geospatial data and field observations are used to describe 10 subunits traceable over the 14 lateral radargrams imaging the lower 38 m of the deposit. Additional subunits are depicted further upslope in a longitudinal transect. As well as demonstrating the need for continued investigation of deposit architecture using non‐traditional techniques, these results may help improve future interpretations of post‐event deposits.  相似文献   
48.
Despite much progress over the past years in fundamental gas hydrate research, frontiers to the unknown are the early beginning and early decomposition of gas hydrates in their natural, submarine environment: gas bubbles meeting ocean water and forming hydrate, and gas starting to escape from the surface of a hydrate grain. In this paper we report on both of these topics, and present three-dimensional microstructure results obtained by synchrotron radiation X-ray cryo-tomographic microscopy (SRXCTM). Hydrates can precipitate when hydrate-forming molecules such as methane exceed solubility, and combine with water within the gas hydrate stability zone. Here we show hydrate formation on surfaces of bubbles from different gas mixtures and seawater, based on underwater robotic in situ experiments in the deep Monterey Canyon, offshore California. Hydrate begins to form from the surrounding water on the bubble surfaces, and subsequently grows inward into the bubble, evidenced by distinct edges. Over time, the bubbles become smaller while gas is being incorporated into newly formed hydrate. In contrast, current understanding has been that hydrate decomposition starts on the outer surface of hydrate aggregates and grains. It is shown that in an early stage of decomposition, newly found tube structures connect well-preserved gas hydrate patches to areas that are dissociating, demonstrating how dissociating areas in a hydrate grain are linked through hydrate that is still intact and will likely decompose at a later stage.
Figure
The boundaries of a gas hydrate grain: excepting for the matrix (transparent, not shown), one can see tubular structures, pores from decomposition, and bubbles.  相似文献   
49.
50.
Cloud radars at X, Ka and W-bands have been used in the past for ocean studies of clouds, but the lack of suitable stabilization has limited their usefulness in obtaining accurate measurements of the velocity structure of cloud particles and the heights of cloud features. A 94 GHz (W-band) radar suitable for use on shipboard studies of clouds has been developed that is small and lightweight and can maintain the radar’s beam pointing in the vertical to reduce the affects of the pitch and roll of the ship. A vertical velocity sensor on the platform allows the effects of the ship’s heave to be removed from the measured cloud particle motions. Results from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) field program on the NOAA vessel Ronald H. Brown demonstrate the improvements to the cloud measurements after the ship’s motion effects are removed. The compact design of the radar also makes it suitable for use in aircraft studies. The radar is being repackaged to fit in an aft bay of a NOAA P3 aircraft to observe sea-spray profiles during ocean storms.  相似文献   
[首页] « 上一页 [1] [2] [3] [4] 5 [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号