首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   10篇
测绘学   1篇
大气科学   13篇
地球物理   30篇
地质学   62篇
海洋学   10篇
天文学   16篇
自然地理   5篇
  2023年   2篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   5篇
  2014年   9篇
  2013年   4篇
  2012年   3篇
  2011年   14篇
  2010年   7篇
  2009年   10篇
  2008年   6篇
  2007年   9篇
  2006年   7篇
  2005年   1篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有137条查询结果,搜索用时 312 毫秒
51.
This paper uses the EMF27 scenarios to explore the role of renewable energy (RE) in climate change mitigation. Currently RE supplies almost 20 % of global electricity demand. Almost all EMF27 mitigation scenarios show a strong increase in renewable power production, with a substantial ramp-up of wind and solar power deployment. In many scenarios, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive even without climate policy, whereas the prospects of solar photovoltaics (PV) are highly contingent on the ambitiousness of climate policy. Bioenergy is an important and versatile energy carrier; however—with the exception of low temperature heat—there is less scope for renewables other than biomass for non-electric energy supply. Despite the important role of wind and solar power in climate change mitigation scenarios with full technology availability, limiting their deployment has a relatively small effect on mitigation costs, if nuclear and carbon capture and storage (CCS)—which can serve as substitutes in low-carbon power supply—are available. Limited bioenergy availability in combination with limited wind and solar power by contrast, results in a more substantial increase in mitigation costs. While a number of robust insights emerge, the results on renewable energy deployment levels vary considerably across the models. An in-depth analysis of a subset of EMF27 reveals substantial differences in modeling approaches and parameter assumptions. To a certain degree, differences in model results can be attributed to different assumptions about technology costs, resource potentials and systems integration.  相似文献   
52.
In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10–18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24–36 % of total cropland by 2100.  相似文献   
53.
While most long-term mitigation scenario studies build on a broad portfolio of mitigation technologies, there is quite some uncertainty about the availability and reduction potential of these technologies. This study explores the impacts of technology limitations on greenhouse gas emission reductions using the integrated model IMAGE. It shows that the required short-term emission reductions to achieve long-term radiative forcing targets strongly depend on assumptions on the availability and potential of mitigation technologies. Limited availability of mitigation technologies which are relatively important in the long run implies that lower short-term emission levels are required. For instance, limited bio-energy availability reduces the optimal 2020 emission level by more than 4 GtCO2eq in order to compensate the reduced availability of negative emissions from bioenergy and carbon capture and storage (BECCS) in the long run. On the other hand, reduced mitigation potential of options that are used in 2020 can also lead to a higher optimal level for 2020 emissions. The results also show the critical role of BECCS for achieving low radiative forcing targets in IMAGE. Without these technologies achieving these targets become much more expensive or even infeasible.  相似文献   
54.
Scour holes often form in shallow flows over sand on the beach and in morphodynamic scale experiments of river reaches, deltas and estuarine landscapes. The scour holes are on average 2 cm deep and 5 cm long, regardless of the flow depth and appear to occur under similar conditions as current ripples: at low boundary Reynolds numbers, in fine sand and under relatively low sediment mobility. In landscape experiments, where the flow is only about 1 cm deep, such scours may be unrealistically large and have unnatural effects on channel formation, bar pattern and stratigraphy. This study tests the hypotheses that both scours and ripples occur in the same conditions and that the roughness added by sediment saltation explains the difference between the ripple–dune transition and the clear‐water hydraulic smooth to rough transition. About 500 experiments are presented with a range of sediment types, sediment mobility and obstructions to provoke scour holes, or removal thereof to assess scour hole persistence. Most experiments confirm that ripples and scour holes both form in the ripple stability field in two different bedform stability diagrams. The experiments also show that scours can be provoked by perturbations even below generalized sediment motion. Moreover, the hydraulic smooth to rough transition modified with saltation roughness depending on sediment mobility was similar in magnitude and in slope to ripple–dune transitions. Given uncertainties in saltation relations, the smooth to rough transitions modified for movable beds are empirically equivalent to the ripple–dune transitions. These results are in agreement with the hypothesis that scours form by turbulence caused by localized flow separation under low boundary Reynolds numbers, and do not form under generalized flow separation over coarser particles and intense sediment saltation. Furthermore, this suggests that ripples are a superposition of two independent forms: periodic bedforms occurring in smooth and rough conditions plus aperiodic scours occurring only in hydraulic smooth conditions.  相似文献   
55.
Composite mantle xenoliths from the Cima Volcanic Field (CA, USA) contain glassy veins that cross-cut lithologic layering and preserve evidence of lithospheric melt infiltration events. Compositions and textures of minerals and glasses from these veins have the potential to place constraints on the rates and extents of reaction during infiltration. We studied glass-bearing regions of two previously undescribed composite xenoliths, including optical petrography and chemical analysis for major and trace elements by electron probe microanalysis and laser-ablation inductively coupled plasma mass spectrometry. The petrogenetic history of each vein involves melt intrusion, cooling accompanied by both wall-rock reaction and crystallization, quench of melt to a glass, and possibly later modifications. Exotic secondary olivine crystals in the veins display concentric phosphorus (P)-rich zoning, P-rich glass inclusions, and zoning of rapidly diffusing elements (e.g., Li) that we interpret as records of rapid disequilibrium events and cooling rates on the order of 10 °C/h. Nevertheless, thermodynamic modeling of the diversity of glass compositions recorded in one of the samples demonstrates extensive reaction with Mg-rich olivine from the matrix before final quench. Our results serve as a case study of methods for interpreting the rates and processes of lithospheric melt-rock reactions in many continental and oceanic environments.  相似文献   
56.
The effect of the water soluble oil dispersant Corexit 9527 was tested on larvae from several species of sea urchins and marine fishes. Severe effects in fertilization and development were registered often resulting in pathological larvae and rapid cytolysis. The combination of Corexit 9527 with oil was found to be even more dangerous to the embryo than Corexit or oil alone.  相似文献   
57.
ABSTRACT

Siliciclastic sediments from the Upper Palaeozoic Konya Complex and its Mesozoic cover were studied by a multi-method approach combining thin-section petrography, bulk-rock geochemistry, mineral chemistry of rutile, and U–Pb geochronology of detrital zircons. Provenance sensitive data of samples from the Upper Palaeozoic Hal?c? Formation indicate sediment supply from mainly low- to medium-grade metamorphosed sedimentary rocks of felsic character, while the contribution from volcanic rocks was rare. The detrital zircon record of sediments from the Hal?c? Formation documents sediment supply from different sources and excludes a similar provenance. Some samples show great similarities with Palaeozoic sandstones from the cover sequence of the Saharan Metacraton and the Arabian–Nubian Shield, while the other samples indicate a provenance that must be sought in units with a southern Eurasian affinity. The upper limit for sediment deposition in the Hal?c? Formation is mostly constrained by Early Palaeozoic zircon populations; however, sediment accumulation in Pennsylvanian–Cisuralian time is more likely, contemporaneously with the Upper Palaeozoic succession on the Karaburun Peninsula (western Turkey). The provenance of sediments from the Upper Triassic Ard?çl? Formation remains enigmatic, but the source should be sought nonetheless in units close to the depositional site. In any case, detrital zircon age spectra and compositional data exclude recycling of underlying rock units (i.e. Hal?c? Formation). Overall, our new provenance data reveal great similarities between the Konya Complex and comparable units (Chios, Karaburun) but also highlight distinct differences in terms of sediment composition and provenance.  相似文献   
58.
Jasper Knight   《Sedimentary Geology》2003,160(4):291-307
Temporal changes in meltwater abundance, distribution and characteristics (controlling subglacial processes and ice sheet dynamics) can be inferred from subglacial sediment successions. Field evidence for changes in subglacial meltwater characteristics over time is presented from two sites (Doonan, Drummee) near a former late Weichselian (Devensian) ice centre in the north of Ireland. On a macroscale, both sites investigated show subglacial diamicton overlying glacially planated bedrock platforms. In more detail, primary sedimentary structures and facies variability show a complex relationship between depositional processes and meltwater characteristics at the ice/bed interface (IBI). Sedimentary evidence suggests sediment transport and deposition took place by low-viscosity subglacial slurries (mobile sediment–meltwater admixtures), which are part of a continuum between the processes of subglacial sediment deformation and subglacial meltwater flooding. Subtle changes in meltwater abundance and distribution at the IBI controlled slurry rheology, mechanisms of particle support and detailed sediment depositional processes.  相似文献   
59.
Changes of the summer evapotranspiration regime under increased levels of atmospheric greenhouse gases are discussed for three Alpine river basins on the basis of a new set of simulations carried out with a high-resolution hydrological model. The climate change signal was inferred from the output of two simulations with a state-of-the-art global climate model (GCM), a reference run valid for 1961–1990 and a time-slice simulation valid for 2071–2100 under forcing from the A2 IPCC emission scenario. In this particular GCM experiment and with respect to the Alpine region summer temperature was found to increase by 3 to 4 C, whereas precipitation was found to decrease by 10 to 20%. Global radiation and water vapor pressure deficit were found to increase by about 5% and 2 hPa, respectively. On this background, an overall increase of potential evapotranspiration of about 20% relative to the baseline was predicted by the hydrological model, with important variations between but also within individual basins. The results of the hydrological simulations also revealed a reduction in the evapotranspiration efficiency that depends on altitude. Accordingly, actual evapotranspiration was found to increase at high altitudes and to the south of the Alps, but to decrease in low elevation areas of the northern forelands and in the inner-Alpine domain. Such a differentiation does not appear in the GCM scenario, which predicts an overall increase in evapotranspiration over the Alps. This underlines the importance of detailed simulations for the quantitative assessment of the regional impact of climate change on the hydrological cycle.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号