首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
大气科学   21篇
地球物理   5篇
地质学   15篇
海洋学   13篇
天文学   1篇
自然地理   3篇
  2021年   1篇
  2018年   5篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   7篇
  2012年   4篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   6篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
排序方式: 共有58条查询结果,搜索用时 156 毫秒
51.
52.
53.
The southern Kermadec-Hikurangi convergent margin, east of New Zealand, accommodates the oblique subduction of the oceanic Hikurangi Plateau at rates of 4–5 cm/yr. Swath bathymetry and sidescan data, together with seismic reflection and geopotential data obtained during the GEODYNZ-SUD cruise, showed major changes in tectonic style along the margin. The changes reflect the size and abundance of seamounts on the subducting plateau, the presence and thickness of trench-fill turbidites, and the change to increasing obliquity and intracontinental transpression towards the south. In this paper, we provide evidence that faulting with a significant strike-slip component is widespread along the entire 1000 km margin. Subduction of the northeastern scrap of the Hikurangi Plateau is marked by an offset in the Kermadec Trench and adjacent margin, and by a major NW-trending tear fault in the scarp. To the south, the southern Kermadec Trench is devoid of turbidite fill and the adjacent margin is characterized by an up to 1200 m high scarp that locally separates apparent clockwise rotated blocks on the upper slope from strike-slip faults and mass wasting on the lower slope. The northern Hikurangi Trough has at least 1 km of trench-fill but its adjacent margin is characterized by tectonic erosion. The toe of the margin is indented by 10–25 km for more than 200 km, and this is inferred to be the result of repeated impacts of the large seamounts that are abundant on the northern Hikurangi Plateau. The two most recent impacts have left major indentations in the margin. The central Hikurangi margin is characterized by development of a wide accretionary wedge on the lower slope, and by transpression of presubduction passive margin sediments on the upper slope. Shortening across the wedge together with a component of strike-slip motion on the upper slope supports an interpretation of some strain partitioning. The southern Hikurangi margin is a narrow, mainly compressive belt along a very oblique, apparently locked subduction zone.  相似文献   
54.
Using a 3-D structural model, we performed a basin-scale analysis of the tectonically inverted Mid-Polish Swell, which developed above the NW–SE-oriented Teisseyre-Tornquist Zone. The later separates the Paleozoic West European Platform from the Precambrian East European Craton. The model permits a comparison between the present depths and sedimentary thicknesses of five layers within the Permian–Mesozoic and Cenozoic successions. The inversion of the NW–SE-trending Mid-Polish Trough during the Late Cretaceous–Paleogene resulted in uplift of a central horst, the Mid-Polish Swell, bounded by two lateral troughs. These structural features are induced by squeezing of a weak crust along the Teisseyre-Tornquist Zone. The swell is characterized by an inherited segmentation which is due to NE–SW transversal faults having crustal roots. From NW to SE, we distinguish the Pomeranian, Kujavian, and Ma opolska segments, that are separated by two transversal faults. During the inversion, the Zechstein salt occurring in the Pomeranian and Kujavian segments in the NW acted as decoupling level between the basement and the post-salt cover, leading to disharmonic deformation. Conversely, because no salt occurs in the SE, both basement and cover were jointly deformed. The vertical tectonic uplift at the surface is estimated to amount to 3 km in the Ma opolska segment. The structural inheritance of the basement is expressed by the heterogeneous geometry of the swell and tectonic instability during Mesozoic sedimentation. The reasons for the inheritance are seen in the mosaic-type Paleozoic basement SW of the Teisseyre-Tornquist Zone, contrasting the Precambrian East European Craton which acted as a stable buttress in the NE. The horst and trough geometry of Cenozoic sediments blanketing the Mid-Polish swell reveals the ongoing intracontinental compressional stress in Poland.  相似文献   
55.
The geometry and dynamics of the Mesozoic basins of the Weald–Boulonnais area have been controlled by the distribution of preexisting Variscan structures. The emergent Variscan frontal thrust faults are predominantly E–W oriented in southern England while in northern France they have a largely NW–SE orientation.Extension related to Tethyan and Atlantic opening has reactivated these faults and generated new faults that, together, have conditioned the resultant Mesozoic basin geometries. Jurassic to Cretaceous N–S extension gave the Weald–Boulonnais basin an asymmetric geometry with the greatest subsidence located along its NW margin. Late Cretaceous–Palaeogene N–S oriented Alpine (s.l.) compression inverted the basin and produced an E–W symmetrical anticline associated with many subsidiary anticlines or monoclines and reverse faults. In the Boulonnais extensional and contractional faults that controlled sedimentation and inversion of the Mesozoic basin are examined in the light of new field and reprocessed gravity data to establish possible controls exerted by preexisting Variscan structures.  相似文献   
56.
The Elbe Fault System (EFS) is a WNW-striking zone extending from the southeastern North Sea to southwestern Poland along the present southern margin of the North German Basin and the northern margin of the Sudetes Mountains. Although details are still under debate, geological and geophysical data reveal that upper crustal deformation along the Elbe Fault System has taken place repeatedly since Late Carboniferous times with changing kinematic activity in response to variation in the stress regime. In Late Carboniferous to early Permian times, the Elbe Fault System was part of a post-Variscan wrench fault system and acted as the southern boundary fault during the formation of the Permian Basins along the Trans-European Suture Zone (sensu [Geol. Mag. 134 (5) (1997) 585]). The Teisseyre–Tornquist Zone (TTZ) most probably provided the northern counterpart in a pull-apart scenario at that time. Further strain localisation took place during late Mesozoic transtension, when local shear within the Elbe Fault System caused subsidence and basin formation along and parallel to the fault system. The most intense deformation took place along the system during late Cretaceous–early Cenozoic time, when the Elbe Fault System responded to regional compression with up to 4 km of uplift and formation of internal flexural highs. Compressional deformation continued during early Cenozoic time and actually may be ongoing. The upper crust of the Elbe Fault System, which itself reacted in a more or less ductile fashion, is underlain by a lower crust characterised by low P-wave velocities, low densities and a weak rheology. Structural, seismic and gravimetric data as well as rheology models support the assumption that a weak, stress-sensitive zone in the lower crust is the reason for the high mobility of the area and repeated strain localisation along the Elbe Fault System.  相似文献   
57.
A variant of the Rosenbrock‐W integration method is proposed for real‐time dynamic substructuring and pseudo‐dynamic testing. In this variant, an approximation of the Jacobian matrix that accounts for the properties of both the physical and numerical substructures is used throughout the analysis process. Only an initial estimate of the stiffness and damping properties of the physical components is required. It is demonstrated that the method is unconditionally stable provided that specific conditions are fulfilled and that the order accuracy can be maintained in the nonlinear regime without involving any matrix inversion while testing. The method also features controllable numerical energy dissipation characteristics and explicit expression of the target displacement and velocity vectors. The stability and accuracy of the proposed integration scheme are examined in the paper. The method has also been verified through hybrid testing performed of SDOF and MDOF structures with linear and highly nonlinear physical substructures. The results are compared with those obtained from the operator splitting method. An approach based on the modal decomposition principle is presented to predict the potential effect of experimental errors on the overall response during testing. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
58.
Using automated supervised segmentation of multibeam backscatter data to delineate seafloor substrates is a relatively novel technique. Low-frequency multibeam echosounders (MBES), such as the 12-kHz EM120, present particular difficulties since the signal can penetrate several metres into the seafloor, depending on substrate type. We present a case study illustrating how a non-targeted dataset may be used to derive information from multibeam backscatter data regarding distribution of substrate types. The results allow us to assess limitations associated with low frequency MBES where sub-bottom layering is present, and test the accuracy of automated supervised segmentation performed using SonarScope® software. This is done through comparison of predicted and observed substrate from backscatter facies-derived classes and substrate data, reinforced using quantitative statistical analysis based on a confusion matrix. We use sediment samples, video transects and sub-bottom profiles acquired on the Chatham Rise, east of New Zealand. Inferences on the substrate types are made using the Generic Seafloor Acoustic Backscatter (GSAB) model, and the extents of the backscatter classes are delineated by automated supervised segmentation. Correlating substrate data to backscatter classes revealed that backscatter amplitude may correspond to lithologies up to 4 m below the seafloor. Our results emphasise several issues related to substrate characterisation using backscatter classification, primarily because the GSAB model does not only relate to grain size and roughness properties of substrate, but also accounts for other parameters that influence backscatter. Better understanding these limitations allows us to derive first-order interpretations of sediment properties from automated supervised segmentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号