首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   3篇
测绘学   1篇
大气科学   4篇
地球物理   19篇
地质学   39篇
海洋学   8篇
天文学   11篇
自然地理   14篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   8篇
  2008年   7篇
  2006年   3篇
  2005年   3篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1987年   2篇
  1985年   1篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有96条查询结果,搜索用时 46 毫秒
81.
A simple theoretical expression for the mean kinetic temperature of the protons in a steady state as a function of heliocentric distance is derived. The basic assumption is that the temperature anisotropy of the protons is invariant in space where binary encounters are rare. For an assumed base temperature of 5 × 105K at a distance of 0.05 AU, the calculated temperature at a distance of 1 AU is in the range (2–4) × 104K for an average anisotropy factor of 3: this range of temperatures is close to the observed average value under so-called ‘quiet’ conditions. Measurement of the anisotropy factor at different heliocentric distances is required to test the basis of the model.  相似文献   
82.
There is a large uncertainty in the estimation of dust radiative forcing due to the lack of adequate data about complex spatial and temporal pattern of the radiative properties of dust. Here, we examine the temporal and spatial variability of dust absorption in the thermal infrared over the Afro-Asian regions using satellite data. Large dust absorption (nearly double compared to that of pure dust) was observed in regions with large anthropogenic influence, possibly due to deposition of black carbon on dust particles. While most of the recent estimates of global mean dust radiative forcing predicted net cooling, our studies indicate that there could be large heating due to dust over vast Afro-Asian regions. It appears that large dust heating is due to its interaction with anthropogenic black carbon.  相似文献   
83.
The present study employs a method for analysis of the sulfur isotopic composition of trace sulfate extracted from carbonates collected in Namibia in order to document secular variations in the sulfur isotopic composition of Neoproterozoic oceanic sulfate and to assess variations in the sulfur cycle that may have accompanied profound climatic events that have been described as the snowball Earth hypothesis. The carbonates in the Otavi Group of Northwest Namibia contain 3-295 ppm sulfate. Positive excursions, to a high of 40‰ (CDT), occur above the lower (Chuos Formation) and upper (Ghaub Formation) glacial intervals in the Rasthof and Maieberg cap carbonates, respectively. Positive excursions at the top of the Rasthof Formation (reaching 51‰) and within the overlying Gruis Formation (34‰) do not appear to correspond to glaciation. The δ34Ssulfate values within the Ombaatjie Formation exhibit shifts over relatively short stratigraphic intervals (tens of meters), varying between ∼15 and 25‰. Cap carbonates from Australia exhibit positive δ34Spyrite trends with amplitudes similar to those of Namibian δ34Ssulfate, although, more data are necessary to firmly establish these δ34S trends as global in nature. δ34Ssulfate excursions found in Namibian cap carbonates are consistent with the snowball Earth hypothesis in that they appear to reflect nearly complete reduction of sulfate in an isolated, anoxic global ocean, although, there are other mechanisms that may have facilitated these large shifts in δ34Ssulfate. Regardless, the low sulfate concentrations in Otavi carbonates, the high amplitude variability of the δ34Ssulfate curve, and the apparently full reduction of sulfate (as implied from δ34Spyrite data), even in strata low in Corg, suggest that Neoproterozoic oceanic sulfate concentrations were much lower than modern values. Additionally, the buildup of ferrous iron and banded-iron formations during the Sturtian glacial event would indicate that Fe supply exceeded sulfide availability during the glacials and/or that all sulfide was fixed and buried. This could be construed as further evidence in support of low oceanic sulfate (and sulfide) at this time.  相似文献   
84.
During the middle Pleistocene Nome River glaciation of northwestern Alaska, glaciers covered an area an order of magnitude more extensive than during any subsequent glacial intervals. The age of the Nome River glaciation is constrained by laser-fusion 40Ar/39Ar analyses of basaltic lava that overlies Nome River drift at Minnie Creek, central Seward Peninsula, that average 470,000 ± 190,000 yr (±1σ). Milligram-size subsamples of the lava were dated to identify and eliminate extraneous 40Ar enrichments that rendered the mean of conventional K---Ar dates on larger bulk samples of the same flow too old (700,000 ± 570,000 yr). While the 40Ar/39Ar analyses provide a minimum limiting age for the Nome River glaciation, maximum ages are provided by a provisional K---Ar date on a basaltic lava flow that underlies the Nome River drift at nearby Lave Creek, by paleomagnetic determinations of the drift itself at and near the type locality, and by amino acid epimerization analysis of molluscan fossils from nearshore sediments of the Anvilian marine transgression that underlie Nome River drift on the coastal plain at Nome. Taken together, the new age data indicate that the glaciation took place between 580,000 and 280,000 yr ago. The altitude of the Anvilian deposits suggests that eustatic sea level during the Anvilian transgression rose at least as high as and probably higher than during the last interglacial transgression; by correlation with the marine oxygen-isotope record, the transgression probably dates to stage 11 at 410,000 yr, and the Nome River glaciation is younger still. Analyses of floor altitudes of presumed Nome River cirques indicate that the Nome River regional snowline depression was at least twice that of the maximum late Wisconsin. The cause of the enhanced snowline lowering appears to be related to greater availability of moisture in northwestern Alaska during the middle Pleistocene.  相似文献   
85.
We reconstructed a chronology of glaciation spanning from the Late Pleistocene through the late Holocene for Fish Lake valley in the north‐eastern Alaska Range using 10Be surface exposure dating and lichenometry. After it attained its maximum late Wisconsin extent, the Fish Lake valley glacier began to retreat ca. 16.5 ka, and then experienced a readvance or standstill at 11.6 ± 0.3 ka. Evidence of the earliest Holocene glacial activity in the valley is a moraine immediately in front of Little Ice Age (LIA) moraines and is dated to 3.3–3.0 ka. A subsequent advance culminated at ca. AD 610–900 and several LIA moraine crests date to AD 1290, 1640, 1860 and 1910. Our results indicate that 10Be dating from high‐elevation sites can be used to help constrain late Holocene glacial histories in Alaska, even when other dating techniques are unavailable. Close agreement between 10Be and lichenometric ages reveal that 10Be ages on late Holocene moraines may be as accurate as other dating methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
86.
Amino acid racemization (AAR) is a cost-effective method for dating the large numbers of specimens required for time-averaging studies. Because the aim of time-averaging studies is to determine the structure of the age distribution, any data screening must be done cautiously and systematically. Methods to quantitatively assess the quality of AAR data and to identify aberrant specimens are under-developed. Here we examine a variety of screening criteria for identifying outliers and determining the suitability of specimens for numerical dating including: high serine concentrations (modern contamination), covariance of aspartic acid (Asp) and glutamic acid (Glu) concentrations (diagenetic influences), replication of measurements (specimen heterogeneity), and the relation between Asp and Glu d/l values (internal consistency). This study is based on AAR analyses of 481 late Holocene shells of four molluscan taxa (Ethalia, Natica, Tellina, and Turbo) collected from shallow sediment cores from the central Great Barrier Reef. Different outliers are flagged by the different screening criteria, and 6% of specimens were found to be unsuitable for time-averaging analyses based on screening the raw AAR data. We recommend a hybrid approach for identifying outliers and specimens for numerical dating.  相似文献   
87.
Evidence from lake sediments and glacier forefields from two hydrologically isolated lake basins is used to reconstruct Holocene glacier and climate history at Hallet and Greyling Lakes in the central Chugach Mountains of south-central Alaska. Glacial landform mapping, lichenometry, and equilibrium-line altitude reconstructions, along with changes in sedimentary biogenic-silica content, bulk density, and grain-size distribution indicate a dynamic history of Holocene climate variability. The evidence suggests a warm early Holocene from 10 to 6 ka, followed by the onset of Neoglaciation in the two drainage basins, beginning between 4.5 and 4.0 ka. During the past 2 ka, the glacial landforms and lacustrine sediments from the two valleys record a remarkably similar history of glaciation, with two primary advances, one during the first millennium AD, from ~500 to 800 AD, and the second during the Little Ice Age (LIA) from ~1400 to 1900 AD. During the LIA, the reconstructed equilibrium-line altitude in the region was no more than 83 ± 44 m (n = 21) lower than the modern, which is based on the extent of glaciers during 1978. Differences between the summer temperature inferred from the biogenic-silica content and the evidence for glacial advances and retreats suggest a period of increased winter precipitation from 1300 to 1500 AD, and reduced winter precipitation from 1800 to 1900 AD, likely associated with variability in the strength of the Aleutian Low.
Darrell S. KaufmanEmail:
  相似文献   
88.
The 14 papers in this Special Issue of the Journal of Paleolimnology report new records of Holocene climate and environmental change from Arctic lakes, with emphasis on the last 2000 years. The study sites span the high latitudes of North America and extend into northwestern Europe. The studies rely on multiple proxy indicators to reconstruct past climate, including: varve thicknesses, chironomid, diatom, and pollen assemblages, biogenic-silica and organic-matter content, oxygen-isotope ratios in diatoms, and the frequency of lake-ice-rafted aggregates. These proxies primarily document changes in past summer temperatures, the main control on physical and biological processes in lakes at high latitudes. The records will be integrated into a larger network of paleoclimate sites to investigate the spatial and temporal variability of climate change and to compare the paleoclimate inferences with the output of general circulation models. This is the Introduction to a series of fourteen papers published as a special issue dedicated to reconstructing late Holocene climate change from Arctic lake sediments. The special issue is a contribution to the International Polar Year and was edited by Darrell Kaufman.  相似文献   
89.
A continuous record of lacustrine sedimentation capturing the entire full-glacial period was obtained from Arolik Lake in the Ahklun Mountains, southwestern Alaska. Fluctuations in magnetic susceptibility (MS), grain size, organic-matter (OM) content, C/N ratios, 13C, and biogenic silica (BSi) record marked environmental changes within the lake and its watershed during the last 33 cal ka. Age control is provided by 31 14C ages on plant macrofossils in four cores between 5.2 and 8.6 m long. Major stratigraphic units are traceable throughout the lake subbottom in acoustical profiles, and provisional ages are derived for six prominent tephra beds, which are correlated among the cores. During the interstadial interval between 33 and 30 cal ka, OM and BSi contents are relatively high with values similar to those of the Pleistocene–Holocene transition, suggesting a similar level of aquatic productivity. During the glacial interval that followed (30–15 cal ka), OM and BSi decrease in parallel with declining summer insolation. OM and BSi values remain relatively uniform compared with the higher variability before and after this interval, and they show no major shifts that might correlate with climate fluctuations evidenced by the local moraine record, nor with other global climate changes. The glacial interval includes a clay-rich unit with a depauperate diatom assemblage that records the meltwater spillover of an ice-dammed lake. The meltwater pulse, and therefore the maximum extent of ice attained by a major outlet glacier of the Ahklun Mountain ice cap, lasted from 24 to 22 cal ka. The Pleistocene–Holocene transition (15–11 cal ka) exhibits the most prominent shifts in OM and BSi, but rapid and dramatic fluctuations in OM and BSi continue throughout the Holocene, indicating pronounced paleoenvrionmental changes.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号