首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
  国内免费   3篇
测绘学   1篇
大气科学   6篇
地球物理   7篇
地质学   25篇
海洋学   5篇
天文学   5篇
自然地理   1篇
  2021年   1篇
  2018年   2篇
  2017年   3篇
  2015年   3篇
  2013年   5篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1990年   1篇
  1986年   1篇
  1983年   1篇
  1972年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
11.
Many bends or step-overs along strike–slip faults may evolve by propagation of the strike–slip fault on one side of the structure and progressive shut-off of the strike–slip fault on the other side. In such a process, new transverse structures form, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike–slip duplex. Consequences of this type of step-over evolution include: (1) the amount of structural relief in the restraining step-over or bend region is less than expected; (2) pull-apart basin deposits are left outside of the active basin; and (3) local tectonic inversion occurs that is not linked to regional plate boundary kinematic changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California; we present evidence at different scales for the evolution of bends and step-overs along this fault system. Examples of pull-apart basin deposits related to migrating releasing (right) bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault, and the Greenville to the Concord fault (ten km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Similar 4D evolution may characterize the evolution of other regions in the world, including the Dead Sea pull-apart, the Gulf of Paria pull-apart basin of northern Venezuela, and the Hanmer and Dagg basins of New Zealand.  相似文献   
12.
John Wakabayashi   《Tectonophysics》2004,392(1-4):193
Metamorphic pressure (P)–temperature (T) paths are commonly used as tools to interpret the tectonic history of orogenic belts, those deformed belts of rocks that record past activity along active plate margins. Many studies and reviews relating PT path development to tectonics have focused on thrusting–thermal relaxation cycles, with special emphasis on collisional processes. Other studies have assumed that PT paths resulted from a single tectono-metamorphic event that accounted for the entire burial–exhumation history of the rocks. In many cases, such assumptions may prove invalid.This paper speculates on the relationship of tectonic processes other than thrusting–heating to PT path development. The processes discussed herein include subduction initiation, triple-junction interactions, initiation and shut off of arc volcanism, subcontinental delamination, and hot spot migration. All of these processes may leave a signature in the metamorphic rock record. Examples are presented from a number of localities, most of which are from the Pacific Rim. Although thrusting–heating cycles have influenced metamorphic evolution in many orogenic belts, the potential impact of other types of tectonic mechanisms should not be overlooked.  相似文献   
13.
In situ synchrotron X-ray diffraction experiments were conducted using the SPEED-1500 multi-anvil press at SPring-8 on majoritic garnet synthesized from natural mid-ocean ridge basalt (MORB), whose chemical composition is close to the average of oceanic crust, at 19 GPa and 2200 K. Pressure-volume-temperature data were collected using a newly developed high-pressure cell assembly to 21 GPa and 1273 K. Data were fit to the high-temperature Birch-Murnaghan equation of state, with fixed values for the ambient cell volume (V0 = 1574.14(4) Å3) and the pressure derivative of the isothermal bulk modulus (KT = 4). This yielded an isothermal bulk modulus of KT0 = 173(1) GPa, a temperature derivative of the bulk modulus (∂KT/∂T)P = −0.022(5) GPa K−1, and a volumetric coefficient of thermal expansivity α = a + bT with values of a = 2.0(3) × 10−5 K−1 and b = 1.0(5) × 10−8 K−2. The derived thermoelastic parameters are very similar to those of pyrope. The density of subducted oceanic crust compared to pyrolitic mantle at the conditions in Earth's transition zone (410-660 km depth) was calculated using these results and previously reported thermoelastic parameters for MORB and pyrolite mineral assembledges. These calculations show that oceanic crust is denser than pyrolitic mantle throughout the mantle transition zone along a normal geotherm, and the density difference is insensitive to temperature at the pressures in lower part of the transition zone.  相似文献   
14.
In situ X-ray diffraction measurements of KAlSi3O8-hollandite (K-hollandite) were performed at pressures of 15–27 GPa and temperatures of 300–1,800 K using a Kawai-type apparatus. Unit-cell volumes obtained at various pressure and temperature conditions in a series of measurements were fitted to the high-temperature Birch-Murnaghan equation of state and a complete set of thermoelastic parameters was obtained with an assumed K300,0=4. The determined parameters are V 300,0=237.6(2) Å3, K 300,0=183(3) GPa, (?K T,0/?T) P =?0.033(2) GPa K?1, a 0=3.32(5)×10?5 K?1, and b 0=1.09(1)×10?8 K?2, where a 0 and b 0 are coefficients describing the zero-pressure thermal expansion: α T,0 = a 0 + b 0 T. We observed broadening and splitting of diffraction peaks of K-hollandite at pressures of 20–23 GPa and temperatures of 300–1,000 K. We attribute this to the phase transitions from hollandite to hollandite II that is an unquenchable high-pressure phase recently found. We determined the phase boundary to be P (GPa)=16.6 + 0.007 T (K). Using the equation of state parameters of K-hollandite determined in the present study, we calculated a density profile of a hypothetical continental crust (HCC), which consists only of K-hollandite, majorite garnet, and stishovite with 1:1:1 ratio in volume. Density of HCC is higher than the surrounding mantle by about 0.2 g cm?3 in the mantle transition zone while this relation is reversed below 660-km depth and HCC becomes less dense than the surrounding mantle by about 0.15 g cm?3 in the uppermost lower mantle. Thus the 660-km seismic discontinuity can be a barrier to prevent the transportation of subducted continental crust materials to the lower mantle and the subducted continental crust may reside at the bottom of the mantle transition zone.  相似文献   
15.
Quaternary folding of the eastern Tian Shan, northwest China   总被引:3,自引:0,他引:3  
The Tian Shan, east–west trending more than 2000 km, is one of most active intracontinental mountain building belts that resulted from India–Eurasia collision during Cenozoic. In this study, Quaternary folding related to intracontinental mountain building of the Tian Shan orogenic belt is documented based on geologic interpretation and analyses of the satellite remote sensing images [Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM) and India Remote Sensing (IRS) Pan] combined with field geologic and geomorphic observations and seismic reflection profiles. Analyses of spatial–temporal features of Quaternary folded structure indicate that the early Quaternary folds are widely distributed in both piedmont and intermontane basins, whereas the late Quaternary active folds are mainly concentrated on the northern range-fronts. Field observations indicate that Quaternary folds are mainly characterized by fault-related folding. The formation and migration of Quaternary folding are likely related to decollement surfaces beneath the fold-and-fault zone as revealed by seismic reflection profiles. Moreover, analysis of growth strata indicates that the Quaternary folding began in late stage of early Pleistocene (2.1–1.2 Ma). Finally, tectonic evolution model of the Quaternary deformation in the Tian Shan is presented. This model shows that the Quaternary folding and faulting gradually migrate toward the range-fronts due to the continuous compression related to India–Eurasia collision during Quaternary time. As a result, the high topographic relief of the Tian Shan was formed.  相似文献   
16.
To investigate the suitability of synthetic aperture radar (SAR) polarization data to estimate the sea-ice thickness in early summer in Lutzow-Holm Bay, Antarctica, we compared in situ ice thicknesses with the corresponding backscattering co-efficient for each polarization and the VV-to-HH backscattering ratio. The VV-to-HH backscattering ratio was derived from data acquired by ENVISAT Advanced SAR (ASAR). This ratio is related to the near-surface dielectric constant of the sea ice, which is, in turn, related to the developing process of ice and, thus, its thickness via changes in the near-surface sea-ice salinity. The sea ice encountered in the study area is close first-year pack ice and fast ice. For these old and relatively rough sea-ice types, the VV-to-HH backscattering ratio can be expected to depend on salinity-driven changes in the near-surface dielectric constant rather than changes of the surface roughness. We applied the empirical relationships between the ice thickness and the VV-to-HH backscattering ratio with the linear and logarithm fits to ASAR data. The linear fit gave the reliable result, with an rms error being 0.08 m and a correlation coefficient being 0.91, when compared to in situ fast-ice thickness.  相似文献   
17.
In the summer of 1984, two meteorites fell in the northern part of Honshu, Japan; Aomori, at 1:50 p.m. on June 30, and Tomiya, at 1:35 p.m. on August 22. Coordinates of the falls of the Aomori and the Tomiya are at 140°47.1'E., 40°48.6'N., and 140°51.9'E., 38°22.0'N., respectively. Results of chemical analyses of major elements, ratios of Fetotal/SiO2 (0.546 and 0.803) and Femetal/Fetotal (0.332 and 0.581), and molar compositions of olivines (Fa25 and Fa19) indicate that the Aomori and the Tomiya are typical L- and H-group ordinary chondrites, respectively. In the Aomori, chondrules are present as relicts in the well-recrystallized matrix. Olivine and pyroxene are homogeneous in composition, and coarse clear feldspar, up to 100 micrometers in size, is well developed in the chondrules and matrix. Though the Aomori is a petrologic type 6 based on its texture and mineralogy, it includes a few grains of multiple twinned clinobronzite which is rarely observed in highly equilibrated ordinary chondrites. In the Tomiya, chondrules possess a fine-grained mesostasis, and both orthopyroxene and clinobronzite are noticeable in thin sections. Plagioclase is mostly microcrystalline, but is also sparsely present as tiny, visible grains. Thus, the Tomiya was classified to be petrologic type between 4 and 5. The deformation texture of olivine, pyroxene and plagioclase indicates that both meteorites were shocked by 0.2-0.25 Mb. In conjunction with the discussion of the frequency of meteorite-falls, all observed falls of meteorites in Japan are tabulated in this paper.  相似文献   
18.
In situ X-ray observations of the phase transition from ilmenite to perovskite structure in MnGeO3 were carried out in a Kawai-type high-pressure apparatus interfaced with synchrotron radiation. The phase boundary between the ilmenite and perovskite structures in the temperature range of 700–1,400°C was determined to be P (GPa) = 16.5(±0.6) − 0.0034(±0.0006)T (°C) based on Anderson’s gold pressure scale. The Clapeyron slope, dP/dT, determined in this study is consistent with that for the transition boundary between the ilmenite and the perovskite structure in MgSiO3.  相似文献   
19.
Evaluation of time-space distributions of submarine ground water discharge   总被引:2,自引:0,他引:2  
Submarine ground water discharge (SGD) rates were measured continuously by automated seepage meters to evaluate the process of ground water discharge to the ocean in the coastal zone of Suruga Bay, Japan. The ratio of terrestrial fresh SGD to total SGD was estimated to be at most 9% by continuous measurements of electrical conductivity of SGD. Semidiurnal changes of SGD due to tidal effects and an inverse relation between SGD and barometric pressure were observed. Power spectrum density analyses of SGD, sea level, and ground water level show that SGD near shore correlated to ground water level changes and SGD offshore correlated to sea level changes. SGD rates near the mouth of the Abe River are smaller than those elsewhere, possibly showing the effect of the river on SGD. The ratio of terrestrial ground water discharge to the total discharge to the ocean was estimated to be 14.7% using a water balance method.  相似文献   
20.
We have carried out in situ X-ray diffraction experiments on the FeS–H system up to 16.5 GPa and 1723 K using a Kawai-type multianvil high-pressure apparatus employing synchrotron X-ray radiation. Hydrogen was supplied to FeS from the thermal decomposition of LiAlH4, and FeSHx was formed at high pressures and temperatures. The melting temperature and phase relationships of FeSHx were determined based on in situ powder X-ray diffraction data. The melting temperature of FeSHx was reduced by 150–250 K comparing with that of pure FeS. The hydrogen concentration in FeSHx was determined to be x = 0.2–0.4 just before melting occurred between 3.0 and 16.5 GPa. It is considered that sulfur is the major light element in the core of Ganymede, one of the Galilean satellites of Jupiter. Although the interior of Ganymede is differentiated today, the silicate rock and the iron alloy mixed with H2O, and the iron alloy could react with H2O (as ice or water) or the hydrous silicate before the differentiation occurred in an early period, resulting in a formation of iron hydride. Therefore, Ganymede's core may be composed of an Fe–S–H system. According to our results, hydrogen dissolved in Ganymede's core lowers the melting temperature of the core composition, and so today, the core could have solid FeSHx inner core and liquid FeHx–FeSHx outer core and the present core temperature is considered to be relatively low.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号