首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1061篇
  免费   29篇
  国内免费   9篇
测绘学   14篇
大气科学   102篇
地球物理   249篇
地质学   370篇
海洋学   128篇
天文学   144篇
综合类   4篇
自然地理   88篇
  2021年   8篇
  2020年   7篇
  2019年   11篇
  2018年   19篇
  2017年   21篇
  2016年   19篇
  2015年   17篇
  2014年   31篇
  2013年   43篇
  2012年   20篇
  2011年   43篇
  2010年   45篇
  2009年   46篇
  2008年   56篇
  2007年   39篇
  2006年   48篇
  2005年   42篇
  2004年   27篇
  2003年   34篇
  2002年   30篇
  2001年   15篇
  2000年   25篇
  1999年   17篇
  1998年   21篇
  1997年   22篇
  1996年   17篇
  1995年   17篇
  1994年   21篇
  1993年   13篇
  1992年   16篇
  1991年   13篇
  1990年   9篇
  1989年   11篇
  1988年   11篇
  1987年   15篇
  1986年   11篇
  1985年   20篇
  1984年   29篇
  1983年   22篇
  1982年   23篇
  1981年   21篇
  1980年   16篇
  1979年   10篇
  1978年   13篇
  1977年   12篇
  1976年   10篇
  1975年   11篇
  1974年   10篇
  1973年   9篇
  1971年   7篇
排序方式: 共有1099条查询结果,搜索用时 31 毫秒
121.
Abstract– Six large iron meteorites have been discovered in the Meridiani Planum region of Mars by the Mars Exploration Rover Opportunity in a nearly 25 km‐long traverse. Herein, we review and synthesize the available data to propose that the discovery and characteristics of the six meteorites could be explained as the result of their impact into a soft and wet surface, sometime during the Noachian or the Hesperian, subsequently to be exposed at the Martian surface through differential erosion. As recorded by its sediments and chemical deposits, Meridiani has been interpreted to have undergone a watery past, including a shallow sea, a playa, an environment of fluctuating ground water, and/or an icy landscape. Meteorites could have been encased upon impact and/or subsequently buried, and kept underground for a long time, shielded from the atmosphere. The meteorites apparently underwent significant chemical weathering due to aqueous alteration, as indicated by cavernous features that suggest differential acidic corrosion removing less resistant material and softer inclusions. During the Amazonian, the almost complete disappearance of surface water and desiccation of the landscape, followed by induration of the sediments and subsequent differential erosion and degradation of Meridiani sediments, including at least 10–80 m of deflation in the last 3–3.5 Gy, would have exposed the buried meteorites. We conclude that the iron meteorites support the hypothesis that Mars once had a denser atmosphere and considerable amounts of water and/or water ice at and/or near the surface.  相似文献   
122.
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer and the Dust Impact Detection System onboard the Giotto spacecraft taken during the fly-by at Comet 1P/Halley in 1986. We also show that our model is in good agreement with contemporaneous measurements obtained by the International Ultraviolet Explorer, sounding rocket experiments, and various ground based observations.The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique (Tenishev, V., Combi, M., Davidsson, B. [2008]. Astrophys. J. 685, 659-677) by tracking trajectories of gas molecules and dust grains under the influence of the comet’s weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO) from the comet’s surface all the way out to 106 km.As a result we are able to further constrain cometary the gas production rates of CO (13%), CO2 (2.5%), and H2CO (1.5%) relative to water without invoking unknown extended sources.  相似文献   
123.
Abstract– The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene‐rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X‐ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars.  相似文献   
124.
125.
There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.  相似文献   
126.
Produced water undergoes changes in its physical chemistry including precipitation of heavy metals after being discharged and mixed with ambient seawater. Potential impacts of the precipitation of heavy metals on their transport and toxicity were studied using samples from offshore oil production sites on the Scotian Shelf off eastern Canada. Concentrations of aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel and zinc were measured in total, particulate and dissolved fractions together with Microtox tests for assessment of toxicity. Heavy metals in produced water were transformed from dissolved to particulate phase in a period of hours under oxygenated conditions, and aggregated to larger particles that settle rapidly (>100 m/day) over a few days. In addition, there was production of buoyant particles comprised of heavy metal precipitates sequestered onto oil droplets that were transported to the surface. The particulate fraction was generally more toxic than the dissolved fraction. This was evident at the mixing interface between produced water and seawater where elevated particulate and toxicity levels were observed. Laboratory studies suggest an increase in the toxicity of discharged produced water over time. Time-series experiments showed a sustained toxic response for more than a week following the oxidation of freshly discharged produced water that initially elicited little or no toxic response in the Microtox test. Chemical processes identified in this study, namely precipitation of heavy metals and consequent settling and rising fluxes of particles, will influence the toxicity, the fate and the transport of potential contaminants in the produced water. Therefore, these processes need to be considered in assessment of the environmental impact associated with offshore oil and gas operations.  相似文献   
127.
In this study, seasonal and annual variability in the use of estuarine and ocean beaches by young-of-the-year bluefish, Pomatomus saltatrix, was evaluated by indices of abundance in coastal areas of southern New Jersey (1998–2000). Biological and physical factors measured at specific sites were correlated with bluefish abundance to determine the mechanisms underlying habitat selection. In addition, integrative and discrete indicators of bluefish growth were used to examine spatio-temporal dynamics in habitat quality and its effect on habitat selection by multiple cohorts of bluefish. Intra-annual recruitment to coastal areas of southern New Jersey was episodic, and resulted from the ingress of spring-spawned bluefish (hatch-date April) to estuarine beaches in late May to early June, followed by the recruitment of summer-spawned fish (hatch-date early July) to ocean beaches from July to October. Bluefish utilized estuarine and ocean beaches in a facultative manner that was responsive to dynamics in prey composition and temperature conditions. The recruitment and residency of bluefish in the estuary (1998–1999) and ocean beaches (1998), for example, was coincidental with the presence of the Atlantic silverside Menidia menidia and bay anchovy Anchoa mitchilli, the principal prey species for bluefish occupying these respective habitat-types. Bluefish abundance in the estuary (2000) and ocean beaches (1999–2000) was also correlated with water temperature, with the greatest catches of juveniles coinciding with their optimal growth temperature (24 °C). Bluefish growth, estimated as the slope of age–length relationships and daily specific growth rates, equaled 1.27–2.63 mm fork length (FL) d−1 and 3.8–8.7% body length increase d−1, respectively. The growth of sagittal otoliths was also used as a proxy for changes in bluefish size during and shortly before their time of capture. Accordingly, otolith growth rates of summer-spawned bluefish were greater at ocean beaches relative to the estuary and were explained by the more suitable temperature conditions found at ocean beaches during the mid- to late summer. Notwithstanding the fast growth of oceanic summer-spawned bluefish, individuals spawned in the spring were still larger in absolute body size at the end of the summer growing season (240 and 50–200 mm FL for spring- and summer-spawned bluefish, respectively). The size discrepancy between spring- and summer-spawned bluefish at the onset of autumn migrations and during overwintering periods may account for the differential recruitment success of the respective cohorts.  相似文献   
128.
129.
About 1.02 × 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94–137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 × 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with free-chlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction phase. Haloacetic acids (HAAs) were completely sorbed or degraded within 10 months of injection.  相似文献   
130.
Disposal of saline subsurface drainage waters from croplands into evaporation basins (or ponds) in the San Joaquin Valley of California causes excessive accumulation of salts and elevated concentrations of arsenic (As), a potentially high risk element with little information about its fate, in the agricultural evaporation ponds. We examined dissolved As concentration, speciation, and distribution in waters as well as As fractionation in sediments in the 10-cell South Evaporation Basin for better understanding of processes and conditions affecting As transformations and fate in a specific drainage disposal facility. The increase of total dissolved As concentrations were observed with higher Cl and electric conductivity along flow path indicating that evaporation was an important factor regulating total dissolved As concentration. The increases of reduced As species such as arsenite [As(III)] and organic As (monomethylarsonic acid and dimethylarsinic acid) were found towards the terminal flow pathway. However, arsenate [As(V)], the oxidized species remained greater than 67% of total dissolved As in all cell waters. Sequential extractions of sediments indicated that reducing conditions may influence As behavior in sediments to be more soluble and exchangeable. Arsenic association with oxides was appreciable only under oxidizing condition. Carbonate minerals played an important role in immobilizing As into the sediments under alkaline condition and a broad range of redox conditions. However, these sink mechanisms did not significantly reduce As concentrations in the cell waters. The reducing condition facilitated by high concentration of organic matter might be a major factor for the increase in As mobility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号