首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   21篇
  国内免费   10篇
测绘学   2篇
大气科学   50篇
地球物理   77篇
地质学   120篇
海洋学   53篇
天文学   38篇
综合类   1篇
自然地理   54篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   11篇
  2019年   8篇
  2018年   13篇
  2017年   19篇
  2016年   21篇
  2015年   11篇
  2014年   16篇
  2013年   19篇
  2012年   18篇
  2011年   22篇
  2010年   27篇
  2009年   16篇
  2008年   18篇
  2007年   24篇
  2006年   22篇
  2005年   15篇
  2004年   20篇
  2003年   8篇
  2002年   9篇
  2001年   1篇
  2000年   13篇
  1999年   6篇
  1998年   13篇
  1997年   1篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
排序方式: 共有395条查询结果,搜索用时 31 毫秒
291.
292.
In response to the 2004 Indian Ocean tsunami, the United States began a careful review and strengthening of its programs aimed at reducing the consequences of tsunamis. Several reports and calls to action were drafted, including the Tsunami Warning and Education Act (Public Law 109–424) signed into law by the President in December 2006. NOAA’s National Geophysical Data Center (NGDC) and co-located World Data Center for Geophysics and Marine Geology (WDC-GMG) maintain a national and international tsunami data archive that fulfills part of the P.L. 109-424. The NGDC/WDC-GMG long-term tsunami data archive has expanded from the original global historical event databases and damage photo collection, to include tsunami deposits, coastal water-level data, DART? buoy data, and high-resolution coastal DEMs. These data are used to validate models, provide guidance to warning centers, develop tsunami hazard assessments, and educate the public about the risks from tsunamis. In this paper we discuss current steps and future actions to be taken by NGDC/WDC-GMG to support tsunami hazard mitigation research, to ultimately help save lives and improve the resiliency of coastal communities.  相似文献   
293.
Examination with scanning electron microscopy (SEM) and scanning force microscopy (SFM) revealed etch pits, layers and islands on dolomite crystal faces synthesized from calcite in Ca‐Mg‐Cl solutions at 200 °C and a wide variety of natural dolomites. Layers are broad, flat structures bounded by steps less than 100 nm high and greater than 1 μm wide. Islands are rounded topographic highs <20 nm high and <200 nm wide. The nanotopography of synthetic dolomite changed from islands throughout most of the reaction to layers at 100% dolomite. Island nanotopography formed on both Ca‐rich and near‐stoichiometric dolomite. Analyses of reaction products from dolomite synthesis indicates that there are no SFM‐detectable products formed in <10 h. SEM‐detectable products formed in 15 h. X‐ray diffraction (XRD)‐detectable products formed in ≈18 h, and the reaction went to completion in ≈40 h. Based on SFM analyses, the induction period for dolomitization in these experiments accounts for ≈20% of the total reaction time necessary to dolomitize CaCO3 completely under the experimental conditions used here. Island nano‐ topography is inferred to occur at higher degrees of supersaturation than layer nanotopography for three reasons. First, island nanotopography on synthetic calcite and gypsum forms at higher supersaturations than layer nanotopography. Secondly, island nanotopography formed in solutions with higher degrees of supersaturation with respect to dolomite. Thirdly, the greater surface roughness of a crystal face composed of islands compared with layers indicates that island surfaces have higher surface energy than layer surfaces. Therefore, the stability of island surfaces requires a higher degree of supersaturation. Because islands and layers form under a wide range of conditions, their presence provides broadly applicable criteria for evaluating relative degrees of supersaturation under which ancient dolomite formed. Comparison of synthetic dolomites with natural dolomites demonstrates (1) similar nanotopography on natural and synthetic dolomites and (2) both natural planar and non‐planar dolomite may have island nanotopography.  相似文献   
294.
Analysis of dissolved light hydrocarbon gas concentrations (primarily methane and ethane) in water supply wells is commonly used to establish conditions before and after drilling in areas of shale gas and oil extraction. Several methods are currently used to collect samples for dissolved gas analysis from water supply wells; however, the reliability of results obtained from these methods has not been quantified. This study compares dissolved methane and ethane concentrations measured in groundwater samples collected using three sampling methods employed in pre‐ and post‐drill sampling programs in the Appalachian Basin. These include an open‐system collection method where 40 mL volatile organic analysis (VOA) vials are filled directly while in contact with the atmosphere (Direct‐Fill VOA) and two alternative methods: (1) a semi‐closed system method whereby 40 mL VOA vials are filled while inverted under a head of water (Inverted VOA) and (2) a relatively new (2013) closed system method in which the sample is collected without direct contact with purge water or the atmosphere (IsoFlask®). This study reveals that, in the absence of effervescence, the difference in methane concentrations between the three sampling methods was relatively small. However, when methane concentrations equaled or exceeded 20 mg/L (the approximate concentration at which effervescence occurs in the study area), IsoFlask® (closed system) samples yielded significantly higher methane concentrations than Direct‐Fill VOA (open system) samples, and Inverted VOA (semi‐closed system) samples yielded lower concentrations. These results suggest that open and semi‐closed system sample collection methods are adequate for non‐effervescing samples. However, the use of a closed system collection method provides the most accurate means for the measurement of dissolved hydrocarbon gases under all conditions.  相似文献   
295.
296.
Drill sites in the southern Bay of Bengal at 3°N 91°E (International Ocean Discovery Program Expedition 362) have sampled for the first time a complete section of the Nicobar Fan and below to the oceanic crust. This generally overlooked part of the Bengal–Nicobar Fan System may provide new insights into uplift and denudation rates of the Himalayas and Tibetan Plateau. The Nicobar Fan comprises sediment gravity-flow deposits, mostly turbidites, that alternate with hemipelagite drapes and pelagite intervals of varying thicknesses. The decimetre-thick to metre-thick oldest pre-fan sediments (limestones/chalks) dated at 69 Ma are overlain by volcanic material and slowly accumulated pelagites (0.5 g cm−2 kyr−1). At Expedition 362 Site U1480, terrigenous input began in the early Miocene at ca 22.5 Ma as muds, overlain by very thin-bedded and thin-bedded muddy turbidites at ca 19.5 Ma. From 9.5 Ma, sand content and sediment supply sharply increase (from 1–5 to 10–50 g cm−2 kyr−1). Despite the abundant normal faulting in the Nicobar Fan compared with the Bengal Fan, it offers a better-preserved and more homogeneous sedimentary record with fewer unconformities. The persistent connection between the two fans ceased at 0.28 Ma when the Nicobar Fan became inactive. The Nicobar Fan is a major sink for Himalaya-derived material. This study presents integrated results of International Ocean Discovery Program Expedition 362 with older Deep Sea Drilling Project/Ocean Drilling Program/International Ocean Discovery Program sites that show that the Bengal–Nicobar Fan System experienced successive large-scale avulsion processes that switched sediment supply between the Bengal Fan (middle Miocene and late Pleistocene) and the Nicobar Fan (late Miocene to early Pleistocene). A quantitative analysis of the submarine channels of the Nicobar Fan is also presented, including their stratigraphic frequency, showing that channel size/area and abundance peaked at ca 2 to 3 Ma, but with a distinct low at 3 to 7 Ma: the intervening stratigraphic [sub]unit was a time of reduced sediment accumulation rates.  相似文献   
297.
We present a detailed rock-magnetic and paleomagnetic survey from Autlan volcanic succession in western Mexico. The principal aim of this study is to extend paleomagnetic data from Autlan lavas in order to confirm vertical-axis rotation observed in reconnaissance study and to evaluate long-term variation of the geomagnetic field strength based on existing and global data. The mean inclination (44.7°) is in agreement with the expected inclination for 60 and 70 Ma, as derived from available reference poles for the North American craton. The declination (333.6°), however, is significantly different from those expected, which suggests a statistically significant counterclockwise tectonic rotation ranging between 10° ± 6° and 14° ± 7°. As a measure of paleosecular variation (PSV), we obtained a geomagnetic field dispersion of 9.6° (upper and lower limits: 7.2°–11.9°) in perfect agreement with the previously published PSV compilation of selected Cretaceous data from lavas. The mean virtual dipole moments available for Autlan lavas are about 65% of the present geomagnetic axial dipole but are in reasonably good agreement with other comparable quality determinations between 5 and 90 Ma. This reinforces the hypothesis that low geomagnetic field strengths persisted for the entire Jurassic extending into the Upper Cretaceous.  相似文献   
298.
The expanding use of horizontal drilling and hydraulic fracturing technology to produce oil and gas from tight rock formations has increased public concern about potential impacts on the environment, especially on shallow drinking water aquifers. In eastern Kentucky, horizontal drilling and hydraulic fracturing have been used to develop the Berea Sandstone and the Rogersville Shale. To assess baseline groundwater chemistry and evaluate methane detected in groundwater overlying the Berea and Rogersville plays, we sampled 51 water wells and analyzed the samples for concentrations of major cations and anions, metals, dissolved methane, and other light hydrocarbon gases. In addition, the stable carbon and hydrogen isotopic composition of methane (δ13C‐CH4 and δ2H‐CH4) was analyzed for samples with methane concentration exceeding 1 mg/L. Our study indicates that methane is a relatively common constituent in shallow groundwater in eastern Kentucky, where methane was detected in 78% of the sampled wells (40 of 51 wells) with 51% of wells (26 of 51 wells) exhibiting methane concentrations above 1 mg/L. The δ13C‐CH4 and δ2H‐CH4 ranged from ?84.0‰ to ?58.3‰ and from ?246.5‰ to ?146.0‰, respectively. Isotopic analysis indicated that dissolved methane was primarily microbial in origin formed through CO2 reduction pathway. Results from this study provide a first assessment of methane in the shallow aquifers in the Berea and Rogersville play areas and can be used as a reference to evaluate potential impacts of future horizontal drilling and hydraulic fracturing activities on groundwater quality in the region.  相似文献   
299.
The volume and grain-size of sediment supplied from catchments fundamentally control basin stratigraphy. Despite their importance, few studies have constrained sediment budgets and grain-size exported into an active rift at the basin scale. Here, we used the Corinth Rift as a natural laboratory to quantify the controls on sediment export within an active rift. In the field, we measured the hydraulic geometries, surface grain-sizes of channel bars and full-weighted grain-size distributions of river sediment at the mouths of 47 catchments draining the rift (constituting 83% of the areal extent). Results show that the sediment grain-size increases westward along the southern coast of the Gulf of Corinth, with the coarse-fraction grain-sizes (84th percentile of weighted grain-size distribution) ranging from approximately 19 to 91 mm. We find that the median and coarse-fraction of the sieved grain-size distribution are primarily controlled by bedrock lithology, with late Quaternary uplift rates exerting a secondary control. Our results indicate that grain-size export is primarily controlled by the input grain-size within the catchment and subsequent abrasion during fluvial transport, both quantities that are sensitive to catchment lithology. We also demonstrate that the median and coarse-fraction of the grain-size distribution are predominantly transported in bedload; however, typical sand-grade particles are transported as suspended load at bankfull conditions, suggesting disparate source-to-sink transit timescales for sand and gravel. Finally, we derive both a full Holocene sediment budget and a grain-size-specific bedload discharged into the Gulf of Corinth using the grain-size measurements and previously published estimates of sediment fluxes and volumes. Results show that the bedload sediment budget is primarily comprised (~79%) of pebble to cobble grade (0.475–16 cm). Our results suggest that the grain-size of sediment export at the rift scale is particularly sensitive to catchment lithology and fluvial mophodynamics, which complicates our ability to make direct inferences of tectonic and palaeoenvironmental forcing from local stratigraphic characteristics.  相似文献   
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号