首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130132篇
  免费   2328篇
  国内免费   1037篇
测绘学   3041篇
大气科学   8828篇
地球物理   25835篇
地质学   46500篇
海洋学   11836篇
天文学   29396篇
综合类   372篇
自然地理   7689篇
  2022年   789篇
  2021年   1380篇
  2020年   1538篇
  2019年   1667篇
  2018年   3528篇
  2017年   3297篇
  2016年   4017篇
  2015年   2194篇
  2014年   3891篇
  2013年   6935篇
  2012年   4167篇
  2011年   5549篇
  2010年   4884篇
  2009年   6291篇
  2008年   5669篇
  2007年   5633篇
  2006年   5200篇
  2005年   3967篇
  2004年   3845篇
  2003年   3624篇
  2002年   3454篇
  2001年   3121篇
  2000年   3023篇
  1999年   2432篇
  1998年   2549篇
  1997年   2356篇
  1996年   2023篇
  1995年   2021篇
  1994年   1725篇
  1993年   1616篇
  1992年   1528篇
  1991年   1486篇
  1990年   1558篇
  1989年   1350篇
  1988年   1230篇
  1987年   1480篇
  1986年   1274篇
  1985年   1575篇
  1984年   1760篇
  1983年   1686篇
  1982年   1578篇
  1981年   1419篇
  1980年   1290篇
  1979年   1220篇
  1978年   1191篇
  1977年   1041篇
  1976年   1017篇
  1975年   981篇
  1974年   981篇
  1973年   1027篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
931.
The summer monsoon season of the year 2006 was highlighted by an unprecedented number of monsoon lows over the central and the western parts of India, particularly giving widespread rainfall over Gujarat and Rajasthan. Ahmedabad had received 540.2mm of rainfall in the month of August 2006 against the climatological mean of 219.8mm. The two spells of very heavy rainfall of 108.4mm and 97.7mm were recorded on 8 and 12 August 2006 respectively. Due to meteorological complexities involved in replicating the rainfall occurrences over a region, the Weather Research and Forecast (WRF-ARW version) modeling system with two different cumulus schemes in a nested configuration is chosen for simulating these events. The spatial distributions of large-scale circulation and moisture fields have been simulated reasonably well in this model, though there are some spatial biases in the simulated rainfall pattern. The rainfall amount over Ahmedabad has been underestimated by both the cumulus parameterization schemes. The quantitative validation of the simulated rainfall is done by calculating the categorical skill scores like frequency bias, threat scores (TS) and equitable threat scores (ETS). In this case the KF scheme has outperformed the GD scheme for the low precipitation threshold.  相似文献   
932.
In this paper, we report observations of unusual whistlers recorded at Jammu (geomag. lat. = 22°26′N; L = 1.17), India on March 8, 1999 during the daytime. They are interpreted as one-hop ducted whistlers having propagated along higher L-values in closely spaced narrow ducts from the opposite hemispheres. After leakage from the duct, the waves might have propagated in the earth-ionosphere waveguide towards the equator in surface mode. Tentative explanation of the dynamic spectra of these events is briefly presented.  相似文献   
933.
The Kali-Hindon inter-stream region extends over an area of 395 km2 within the Ganga-Yamuna interfluve. It is a fertile tract for sugarcane cultivation. Groundwater is a primary resource for irrigation and industrial purposes. In recent years, over-exploitation has resulted in an adverse impact on the groundwater regime. In this study, an attempt has been made to calculate a water balance for the Kali-Hindon inter-stream region. Various inflows and outflows to and from the aquifer have been calculated. The recharge due to rainfall and other recharge parameters such as horizontal inflow, irrigation return flow and canal seepage were also evaluated. Groundwater withdrawals, evaporation from the water table, discharge from the aquifer to rivers and horizontal subsurface outflows were also estimated. The results show that total recharge into the system is 148.72 million cubic metres (Mcum), whereas the total discharge is 161.06 Mcum, leaving a deficit balance of −12.34 Mcum. Similarly, the groundwater balance was evaluated for the successive four years. The result shows that the groundwater balance is highly sensitive to variation in rainfall followed by draft through pumpage. The depths to water level are shallow in the canal-irrigated northern part of the basin and deeper in the southern part. The pre-monsoon and post-monsoon water levels range from 4.6 to 17.7 m below ground level (bgl) and from 3.5 to 16.5 m bgl respectively. It is concluded that the groundwater may be pumped in the canal-irrigated northern part, while withdrawals may be restricted to the southern portion of the basin, where intense abstraction has led to rapidly falling water table levels.  相似文献   
934.
溴是一种在自然水体中都含有的元素,通常以B r-的形式存在。目前最常用的水净化方式就是向水中通入臭氧以杀灭细菌;而臭氧分解的副产物即为B r-转换成的B rO3-,这是一种公认的致癌物质。本实验室曾使用阴离子交换高效液相色谱(HPLC)与等离子体质谱(ICP-MS)联用分析B rO3-和B r-,方法虽能有效地将这两种溴形态分离,但分析每个样品需8 m in。本文试图建立新的方法缩短分析时间,并验证该方法应用于实际水样分析时测定其他含溴化合物的能力。1实验部分1.1高效液相色谱分析条件表1列出了等度淋洗和梯度淋洗两种模式下HPLC的分析条件,完成形态的分离。等度淋洗和梯度淋洗在分析中显示出不同  相似文献   
935.
This study explores garnet coronas around hedenbergite, which were formed by the reaction plagioclase + hedenbergite→garnet + quartz, to derive information about diffusion paths that allowed for material redistribution during reaction progress. Whereas quartz forms disconnected single grains along the garnet/hedenbergite boundaries, garnet forms ~20‐μm‐wide continuous polycrystalline rims along former plagioclase/hedenbergite phase boundaries. Individual garnet crystals are separated by low‐angle grain boundaries, which commonly form a direct link between the reaction interfaces of the plagioclase|garnet|hedenbergite succession. Compositional variations in garnet involve: (i) an overall asymmetric compositional zoning in Ca, Fe2+, Fe3+ and Al across the garnet layer; and (ii) micron‐scale compositional variations in the near‐grain boundary regions and along plagioclase/garnet phase boundaries. These compositional variations formed during garnet rim growth. Thereby, transfer of the chemical components occurred by a combination of fast‐path diffusion along grain boundaries within the garnet rim, slow diffusion through the interior of the garnet grains, and by fast diffusion along the garnet/plagioclase and the garnet/hedenbergite phase boundaries. Numerical simulation indicates that diffusion of Ca, Al and Fe2+ occurred about three to four, four and six to seven orders of magnitude faster along the grain boundaries than through the interior of the garnet grains. Fast‐path diffusion along grain boundaries contributed substantially to the bulk material transfer across the growing garnet rim. Despite the contribution of fast‐path diffusion, bulk diffusion through the garnet rim was too slow to allow for chemical equilibration of the phases involved in garnet rim formation even on a micrometre scale. Based on published garnet volume diffusion data the growth interval of a 20‐μm‐wide garnet rim is estimated at ~103–104 years at the inferred reaction conditions of 760 ± 50 °C at 7.6 kbar. Using the same parameterization of the growth law, 100‐μm‐ and 1‐mm‐thick garnet rims would grow within 105–106 and 106–107 years respectively.  相似文献   
936.
Wear parts of many mineral processing and mining equipment are often subjected to high stress loads applied at high speeds and at varying angles of incidence, where the prevalent mode of wear is high-stress gouging/sliding impact abrasion. Examples include crusher liners, wear liners in hoppers and chutes, picks on roadheaders, discs on tunnel boring machines and ground engaging tools. Abrasion under these conditions is characterised by a high material removal rate and thus has a direct bearing on wear rates and service life of the equipment concerned. However, at present there appears to be no method for rock abrasiveness assessment under these conditions. This paper describes a new Gouging Abrasion method and apparatus for testing abrasivity of rocks under high-stress gouging/sliding impact wear. A Gouging Abrasion Index (Gi) is introduced, which can be used for prediction and assessment of component life expectancy and efficiency of mineral processing and materials handling equipment. Experimental data from Gouging Abrasion testing of numerous Australian rock types are presented. It is suggested that the results of Gi testing can be used for wear rate predictions for a variety of mineral processing and materials handling equipment working under high-stress gouging/sliding impact abrasion conditions.  相似文献   
937.
There is an increasing evidence for the involvement of pre-Neoproterozoic zircons in the Arabian–Nubian Shield, a Neoproterozoic crustal tract that is generally regarded to be juvenile. The source and significance of these xenocrystic zircons are not clear. In an effort to better understand this problem, older and younger granitoids from the Egyptian basement complex were analyzed for chemical composition, SHRIMP U–Pb zircon ages, and Sm–Nd isotopic compositions. Geochemically, the older granitoids are metaluminous and exhibit characteristics of I-type granites and most likely formed in a convergent margin (arc) tectonic environment. On the other hand, the younger granites are peraluminous and exhibit the characteristics of A-type granites; these are post-collisional granites. The U–Pb SHRIMP dating of zircons revealed the ages of magmatic crystallization as well as the presence of slightly older, presumably inherited zircon grains. The age determined for the older granodiorite is 652.5 ± 2.6 Ma, whereas the younger granitoids are 595–605 Ma. Xenocrystic zircons are found in most of the younger granitoid samples; the xenocrystic grains are all Neoproterozoic, but fall into three age ranges that correspond to the ages of other Eastern Desert igneous rocks, viz. 710–690, 675–650 and 635–610 Ma. The analyzed granitoids have (+3.8 to +6.5) and crystallization ages, which confirm previous indications that the Arabian–Nubian Shield is juvenile Neoproterozoic crust. These results nevertheless indicate that older Neoproterozoic crust contributed to the formation of especially the younger granite magmas.  相似文献   
938.
The Feiran–Solaf metamorphic belt consists of low-P high-T amphibolite facies, partly migmatized gneisses, schists, amphibolites and minor calc-silicate rocks of metasedimentary origin. There are also thick concordant synkinematic sheets of diorite, tonalite and granodiorite orthogneiss and foliated granite and pegmatite dykelets. The gneissosity (or schistosity) is referred to as S1, and is almost everywhere parallel to lithological layering, S0. This parallelism is not due to transposition. The gneissosity formed during an extensional tectonic event (termed D1), before folding of S0. S1 formed by coaxial pure shear flattening strain (Z normal to S0, i.e. vertical; with X and Y both extensional and lying in S1). This strain also produced chocolate tablet boudinage of some layers and S1-concordant sills and veins. S1 has a strong stretching lineation L1 with rodding characteristics. Within-plane plastic anisotropy (lower ductility along Y compared to along X) resulted in L1-parallel extensional ductile shears and melt filled cracks. Continued shortening of these veins, and back-rotation of foliations on the shears produced intrafolial F1 folds with hinges parallel to the stretching lineation. F1 fold asymmetry variations do not support previous models involving macroscopic F1 folds or syn-gneissosity compressional tectonics. The sedimentary protoliths of the Feiran–Solaf gneisses were probably deposited in a pre-800 Ma actively extending intracratonic rift characterizing an early stage of the break-up of Rodinia.  相似文献   
939.
The utility of paleomagnetic data gleaned from the Bhander and Rewa Groups of the “Purana-aged” Vindhyanchal Basin has been hampered by the poor age control associated with these units. Ages assigned to the Upper Vindhyan sequence range from Cambrian to the Mesoproterozoic and are derived from a variety of sources, including 87Sr/86Sr and δ 13C correlations with the global curves and Ediacara-like fossil finds in the Lakheri–Bhander limestone. New analyses of the available paleomagnetic data collected from this study and previous work on the 1073 Ma Majhgawan kimberlite, as well as detrital zircon geochronology of the Upper Bhander sandstone and sandstones from the Marwar SuperGroup suggest that the Upper Vindhyan sequence may be up to 500 Ma older than is commonly thought. Paleomagnetic analysis generated from the Bhander and Rewa Groups yields a paleomagnetic pole at 44°N, 214.0°E (A95 = 4.3°). This paleomagnetic pole closely resembles the VGP from the well-dated Majhgawan intrusion (36.8°N, 212.5°E, α95 = 15.3°).Detrital zircon analysis of the Upper Bhander sandstone identifies a youngest age population at 1020 Ma. A comparison between the previously correlated Upper Bhander sandstone and the Marwar sandstone detrital suites shows virtually no similarities in the youngest detrital suite sampled. The main 840–920 Ma peak is absent in the Upper Bhander. This supports our assertion that the Upper Bhander is older than the 750–771 Ma Malani sequence, and is likely close to the age of the 1073 Ma Majhgawan kimberlite on the basis of the paleomagnetic similarities. By setting the age of the Upper Vindhyan at 1000–1070 Ma, several intriguing possibilities arise. The Bhander–Rewa paleomagnetic pole allows for a reconstruction of India at 1000–1070 Ma that overlaps with the 1073 ± 13.7 Majhgawan kimberlite VGP. Comparisons between the composite Upper Vindhyan pole (43.9°N, 210.2°E, α95 = 12.2°) and the Australian 1071 ± 8 Ma Bangamall Basin sills and the 1070 Ma Alcurra dykes suggest that Australia and India were not adjacent at this time period.  相似文献   
940.
Mafic rocks in the Chipman domain of the Athabasca granulite terrane, western Canadian Shield, provide the first well‐documented record of two distinct high‐P granulite facies events in the same domain in this region. Textural relations and the results of petrological modelling (NCFMASHT system) of mafic granulites are interpreted in terms of a three‐stage tectonometamorphic history. Stage 1 involved development of the assemblage Grt + Cpx + Qtz ± Pl (M1) from a primary Opx‐bearing igneous precursor at conditions of 1.3 GPa, 850–900 °C. Field and microstructural observations suggest that M1 developed synchronously with an early S1 gneissic fabric. Stage 2 is characterized by heterogeneous deformation (D2) and synkinematic partial retrogression of the peak assemblage to an amphibole‐bearing assemblage (M2). Stage 3 involved a third phase of deformation and a return to granulite facies conditions marked by the prograde breakdown of amphibole (Amph2) to produce matrix garnet (Grt3a) and the coronitic assemblage Cpx3b + Opx3b + Ilm3b + Pl3b (M3b) at 1.0 GPa, 800–900 °C. M1 and M3b are correlated with 2.55 and 1.9 Ga metamorphic generations of zircon, respectively, which were dated in a separate study. Heterogeneous strain played a crucial role in both the development and preservation of these rare examples of multiple granulite facies events within single samples. Without this fortuitous set of circumstances, the apparent reaction history could have incorrectly led to an interpretation involving a single‐cycle high‐grade event. The detailed PTtD history constructed for these rocks provides the best evidence to date that much of the east Lake Athabasca region experienced long‐term lower crustal residence from 2.55 to 1.9 Ga, and thus the region represents a rare window into the reactivation and ultimate stabilization processes of cratonic lithosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号