首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   1篇
地质学   1篇
天文学   11篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  1999年   1篇
  1996年   1篇
  1993年   2篇
  1992年   2篇
  1983年   2篇
  1982年   1篇
  1973年   1篇
排序方式: 共有13条查询结果,搜索用时 203 毫秒
1.
In this paper, we report observations of unusual whistlers recorded at Jammu (geomag. lat. = 22°26′N; L = 1.17), India on March 8, 1999 during the daytime. They are interpreted as one-hop ducted whistlers having propagated along higher L-values in closely spaced narrow ducts from the opposite hemispheres. After leakage from the duct, the waves might have propagated in the earth-ionosphere waveguide towards the equator in surface mode. Tentative explanation of the dynamic spectra of these events is briefly presented.  相似文献   
2.
Observations of whistlers during quiet times made at low-latitude ground station Nainital (geomag. lat. 19 1 N) are used to deduce plasmasphere-ionosphere coupling fluxes. The whistler data from 3 magnetically quiet days are presented that show a smooth decrease in dispersion with time. This decrease in dispersion is interpreted in terms of a corresponding decrease in electron content of tubes of ionization. The electron densities, electron tube contents (1016 el/m2-tube) and coupling fluxes (10 el m–1 s–2) are computed by means of an accurate curve fitting method developed by Tarcsai (1975) and are in good agreement with the results reported by other workers.  相似文献   
3.
Discrete chorus-type emission and whistler precursors recorded in March 1972 during day time hours at our ground based station Gulmarg are presented. It is shown that discrete chorus type emissions are generated in the equatorial region (L 1.2) during cyclotron resonance interaction between the propagating whistler wave and the gyrating electrons. The whistler precursors are explained in terms of the mechanism suggested by Dowden (1972).  相似文献   
4.
Quite often the VLF hiss powers recorded by space probes are some orders of magnitude greater than those predicted by the theory of incoherent Cerenkov radiation. In this note we suggest that the wavegrowth via the Landau instability might satisfactorily account for the disparity between the theory and experiment.  相似文献   
5.
Employing the Haselgrove ray tracing equations and a diffusive equilibrium model of the ionosphere, the propagation characteristics of hook whistlers recorded at low-latitude ground station Varanasi (geomag. lat., 16°6′.N) are discussed. It is shown that the two traces of the hook whistlers are caused by the VLF waves radiated from the return stroke of a lightning discharge which after penetrating the ionosphere at two different entry points, propagated to the opposite hemisphere in the whistler mode and were received at 16 geomagnetic latitude. Further the crossing of ray paths for the same frequency leads to the explanation of the hook whistler. The lower and higher cut-off frequencies are explained in terms of their deviating away from the bunch of the recorded whistler waves and crossing of ray paths for the same frequency.  相似文献   
6.
The propagationmechanism of low latitude daytime whistlers is investigated on the basis of ground measurements made continuously during daytime in North India at Jammu (geomag. lat. 22°26°N;L = 1.17). On February 14, 1998 extremely small dispersion (ESD) whistlers with dispersion varying from 5–10 sec1/2 in surprisingly large numbers were recorded at Jammu during daytime in the late afternoon. The results of a study of the characteristics of ESD whistlers are presented and the discussion indicates that ESD whistlers recorded are the VLF waves radiated from the return stroke of the lightning discharge launched at the ionosphere with different initial wave normal angles, propagated upwards under eitherquasi-longitudinal conditions or pro-longitudinal whistler mode, turned around at different heights due to quasi-transverse propagation and received at Jammu with the dispersion of the order of 5–10 sec1/2. The validity of this suggestion has been tested by performing actualray-tracing computations in thepresence of equatorial anomaly model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
Making use of currently available theory of wave absorption, an attempt has been made to estimate the refractive indices and absorption coefficients for different wave frequencies during day and night times in the Jovian ionosphere. The results obtained have striking similarity with the corresponding results in the case of the Earth's ionosphere. It is concluded that VLF signals can be observed more easily during night times.  相似文献   
8.
This paper presents discrete chorus type emissions observed in January/July, 1970 during the routine recording of whistlers and VLF emissions at our low latitude ground station Gulmarg (geomag. lat., 24°26N; geomag. long., 147°09 E). The chorus type emissions are comprised of discrete, sometimes overlapping, tones of one or more spectral shapes (risers, falling tones, hooks, etc.). It is shown that these emissions are generated in the equatorial plane (L1.2) by cyclotron resonance between the propagating wave and gyrating electrons.  相似文献   
9.
The observation of hisslers during daytime at low latitude station Jammu, India, is reported. The hissler elements are quasi-periodic falling tones observed during the period of hiss activity and appear in minutelong sequences with average spacing between individual elements of the order of 0.15 s. Hissler elements exhibit almost no dispersion and no complex internal structure in slope and intensity, and successive hissler elements do not overlap in time. It seems that the reported hisslers might have propagated in prolongitudinal mode.  相似文献   
10.
The particle energy required to generate the observed VLF hiss in the Jovian magnetosphere has been computed under longitudinal and transverse resonance condition. It is shown that the minimum energy required by electrons to generate VLF hiss under the longitudinal resonance condition lies in the range of 100eV–1keV for the wave frequencies of 2–10 kHz, while the corresponding energy range for the transverse resonance condition for the same frequency range comes out to be 8 keV–40 keV. Further, the average radiated power by the erenkov process in the Jupiter's magnetosphere atL=5.6 Rj by electrons of energy 10 eV, 100 eV, and 1 keV for the wave frequency of 5 kHz has also been computed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号