首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   10篇
  国内免费   6篇
测绘学   8篇
大气科学   8篇
地球物理   38篇
地质学   79篇
海洋学   3篇
天文学   6篇
综合类   1篇
自然地理   12篇
  2022年   9篇
  2021年   10篇
  2020年   9篇
  2019年   8篇
  2018年   16篇
  2017年   12篇
  2016年   9篇
  2015年   12篇
  2014年   15篇
  2013年   15篇
  2012年   5篇
  2011年   6篇
  2010年   9篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2002年   2篇
  1986年   1篇
排序方式: 共有155条查询结果,搜索用时 31 毫秒
41.
Sedighkia  Mahdi  Datta  Bithin 《Natural Hazards》2022,111(3):2855-2879
Natural Hazards - The present study proposes and evaluates an applicable simulation-optimization framework for simulating and evaluating flood management and environmental flow supply by the...  相似文献   
42.
43.
The capture zone for a fully penetrating well in an aquifer with regional flow to a stream boundary under steady-state conditions was delineated using complex algebra and image well theory. Regional flow in the aquifer was allowed to take different directions relative to the stream axis. Two critical pumping rates, Q C1 and Q C2, produce three capture-zone pattern scenarios: (1) at low pumping rates (Q?<?Q C1) water is solely withdrawn from the aquifer and no water from the stream enters the aquifer, (2) at medium pumping rates (Q C1?<?Q?<?Q C2) a portion of stream water enters the aquifer but it is not captured by the well, and (3) at high pumping rates (Q?>?Q C2) pumped water is supplied from both the aquifer and the stream with different proportions. For the second and third scenarios, the stream length interval through which stream water enters the aquifer was determined and found to be more sensitive to pumping rate as the regional flow direction approaches the stream axis. The portion of pumped water supplied by the stream was determined in the third scenario. Finally, the capture-zone asymmetry with respect to its axial line was delineated.  相似文献   
44.

A new remediation technique is proposed to mitigate large deformations imposed on buried pipeline systems subject to permanent ground deformation. With this technique, low-density gravel (LDG) with high porosity, such as pumice, is used as backfill in the trench containing the pipe near an area susceptible to PGD. This countermeasure decreases soil resistance, soil-pipe interaction forces and strain on the pipe as the pipeline deformation mechanism changes to a more desirable shape. Expanded polystyrene geofoam has been introduced to decrease the density of the pipeline backfill; however, LDG is more efficient regarding workability during construction, environmental effects, durability, fire safety, and cost-effectiveness. A series of centrifuge model experiments in which the pipelines were subjected to reverse faulting was conducted to evaluate the proposed method. During faulting, the axial and bending strain and pipe deflection were measured. A comparison of the responses of the remediated pipeline and the pipeline without remediation indicates that the proposed technique substantially mitigates the effects of large deformation.

  相似文献   
45.

Tunneling is often unpopular with local residents and environmentalists, and can cause aquifer damage. Tunnel sealing is sometimes used to avoid groundwater leakage into the tunnel, thereby mitigating the damage. Due to the high cost of sealing operations, a detailed hydrogeological investigation should be conducted as part of the tunneling project to determine the impact of sealing, and groundwater modeling is an accurate method that can aid decision-making. Groundwater-level drawdown induced by the construction of the Headrace water-conveyance tunnel in Sri Lanka dried up 456 wells. Due to resulting socio-environmental problems, tunnel sealing was decided as a remedy solution. However, due to the expectation of significant delays and high costs of sealing, and because the water pressure in the tunnel may prevent groundwater seepage into the tunnel during operation, there was another (counter) decision that the tunnel could remain unsealed. This paper describes groundwater modeling carried out using MODFLOW to determine which option—sealed or unsealed tunnel—is more effective in groundwater level recovery. The Horizontal Flow Barrier and River packages of MODFLOW were used to simulate sealed and unsealed tunnels, respectively. The simulation results showed that only through tunnel sealing can the groundwater level be raised to preexisting levels after 18 years throughout the study area. If the tunnel remains unsealed, about 1 million m3/year of water conveyed by the tunnel will seep into the aquifer, reducing the operational capacity of the tunnel as a transport scheme. In conclusion, partial tunnel sealing in high-impact sections is recommended.

  相似文献   
46.
Hydrogeology Journal - A coupled simulation-optimization model (SOM) is developed in this work that links the US Environmental Protection Agency’s Storm Water Management Model (SWMM) with a...  相似文献   
47.
Seafloor topography certainly has an impact on ocean circulation in different ways. Due to this assumption, the sea surface currents calculated by optical flow (Horn–Schunck) and geostrophic currents methods are analyzed to observe this impact. Pair of sea surface temperature imageries, calculated sea surface height and sea level anomaly are showed beside depth map in areas with meaningful bathymetric features such as underwater mountains and pools. The reason for the formation of some eddies in the Caspian Sea and Indian Ocean is concluded from the location of pools and knolls. In this study, in addition to introducing new time span for calculating geostrophic currents, Ocean Surface Current Analyses Real-Time (OSCAR) currents are applied to validate our estimated currents. Variety of products such as sea surface temperature imageries, OSCAR currents, depth map, calculated results like sea level anomaly and absolute dynamic topography and estimated currents via optical flow and geostrophic currents have been collected in this paper to make very detailed investigation on depth effect on mentioned water parameters. Results show that impacts of knolls and pools are meaningfully clear in optical flow and geostrophic currents in shaping and rationing water motions.  相似文献   
48.
Flyrock is an adverse effect produced by blasting in open-pit mines and tunneling projects. So, it seems that the precise estimations and risk level assessment of flyrock are essential in minimizing environmental effects induced by blasting. The first aim of this research is to model the risk level associated with flyrock through rock engineering systems (RES) methodology. In this regard, 62 blasting were investigated in Ulu Tiram quarry, Malaysia, and the most effective parameters of flyrock were measured. Using the most influential parameters on flyrock, the overall risk of flyrock was obtained as 32.95 which is considered as low to medium degree of vulnerability. Moreover, the second aim of this research is to estimate flyrock based on RES and multiple linear regression (MLR). To evaluate performance prediction of the models, some statistical criteria such as coefficient of determination (R2) were computed. Comparing the values predicted by the models demonstrated that the RES has more suitable performance than MLR for predicting the flyrock and it could be introduced as a powerful technique in this field.  相似文献   
49.
The Influence of Shearing Velocity on Shear Behavior of Artificial Joints   总被引:1,自引:1,他引:0  
In this paper, the effects of shear velocity on the shearing behavior of artificial joints have been studied at different normal stress levels. Here, artificial joints with planar and rough surfaces were prepared with the plaster (simulating soft rock joints) and concrete (medium-hard rock joints) materials. The rough joints had triangular shaped asperities with 10° and 20° inclination angles. Direct shear tests were performed on these joints under various shear velocities in the range of 0.3–30 mm/min. The planar plaster–plaster and planer concrete–concrete joints were sheared at three levels of normal stress under constant normal load boundary condition. Also, the rough plaster–plaster and concrete–concrete joints were sheared at one level of normal stress under constant normal stiffness boundary condition. The results of the shear tests show that the shearing parameters of joints, such as shear strength, shear stiffness and friction angle, are related to the shear velocity. Shear strength of planar and rough plaster–plaster joints were decreased when the shear velocity was increased. Shear strength of concrete joints, except for rough joints with 10° inclination, increased with increasing shear velocity. Regardless of the normal stress level, shear stiffness of both planar plaster–plaster and concrete–concrete joints were decreased when the shear velocity was increased.  相似文献   
50.
The standard procedure in Quebec, Canada, for evaluating the failure of an embankment dam, per the Loi sur la sécurité des barrages, specifies a 30-min-long failure scenario with a breach width equal to four times the maximal height of the dam. We demonstrate a new method for evaluating the flood overtopping failure scenario for embankment dams with concrete upstream slope protection, using Toulnustouc dam for example computations. Our new methodology computes safety factors for a range of potential failure mechanisms taking into account geotechnical, hydraulic, and structural factors. We compile the results of our investigations of the various dam failure mechanisms and compare the corresponding dam failure hydrographs to the current hydrograph specified in the standard analysis procedures. Our investigations tend to invalidate the current standard procedures for evaluating the failure of rock-fill dams with concrete upstream faces, by indicating that the current standard procedures underestimate the peak failure discharge and overestimate the time to the peak discharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号