首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3394篇
  免费   153篇
  国内免费   44篇
测绘学   87篇
大气科学   275篇
地球物理   728篇
地质学   1310篇
海洋学   242篇
天文学   613篇
综合类   12篇
自然地理   324篇
  2021年   39篇
  2020年   62篇
  2019年   82篇
  2018年   87篇
  2017年   99篇
  2016年   118篇
  2015年   100篇
  2014年   121篇
  2013年   175篇
  2012年   114篇
  2011年   169篇
  2010年   151篇
  2009年   200篇
  2008年   175篇
  2007年   169篇
  2006年   154篇
  2005年   140篇
  2004年   136篇
  2003年   99篇
  2002年   94篇
  2001年   68篇
  2000年   66篇
  1999年   61篇
  1998年   54篇
  1997年   56篇
  1996年   54篇
  1995年   42篇
  1994年   29篇
  1993年   30篇
  1992年   27篇
  1991年   40篇
  1990年   22篇
  1989年   26篇
  1988年   31篇
  1987年   37篇
  1986年   24篇
  1985年   30篇
  1984年   27篇
  1983年   20篇
  1982年   27篇
  1981年   31篇
  1980年   28篇
  1979年   17篇
  1978年   15篇
  1977年   20篇
  1976年   17篇
  1975年   13篇
  1974年   26篇
  1973年   21篇
  1971年   15篇
排序方式: 共有3591条查询结果,搜索用时 343 毫秒
991.
Two of the biggest drawbacks of using permeable reactive barriers (PRBs) to treat contaminated ground water are the high capital cost of installation, particularly when the contaminated ground water is deep below ground surface, and the uncertainty of whether or not PRBs remain effective for the long time scales (e.g., decades) needed for many contaminant plumes. The use of an injection-extraction treatment well pair (IETWP) for capture and treatment of contaminated ground water can circumvent these difficulties, while still providing many of the same advantages offered by PRBs. In this paper, the hydraulics of IETWPs and PRBs are compared, focusing primarily on the width of the captured plume. It is demonstrated that IETWPs act as hydraulic barriers in a manner similar to PRBs, and that IETWPs provide excellent plume capture. A mathematical expression is presented for the plume capture width of an IETWP oriented perpendicular to the ground water flow direction in a homogeneous aquifer. Also discussed are other practical considerations that might determine whether an IETWP is better suited than a PRB for a particular contaminated site; these considerations include operating and maintenance costs, and the conditions under which an IETWP system can be used for in situ remediation.  相似文献   
992.
Absolutely calibrated in-situ measurements of tropospheric hydroxyl radicals, formaldehyde, sulfur dioxide, and naphthalene (C10H8) were performed by long-path laser absorption spectroscopy during the field campaign POPCORN. The absorption light path was folded into an open optical multiple reflection cell with a mirror separation of 38.5 m. Using a light path length of 1848 m and an integration time of 200 s, the average 1-detection limits of OH, HCHO, SO2 and C10H8 during POPCORN were 8.7 · 105 cm–3, 8.3 · 109 cm–3, 2.4 · 109 cm–3, 1.5 · 108 cm–3, respectively. In total, 392 identifications of OH in air spectra were made in a rural environment between August 5 and August 23, 1994. We present and discuss OH absorption spectra and diurnal OH concentration profiles of three days which are representative for measurements under different pollution conditions during POPCORN. The observed maximum and median OH radical concentrations are 1.3 · 107 OH/cm3 and 4.0 · 106 OH/cm3, respectively. The measured diurnal variation of the OH concentration shows a good correlation with the primary formation reaction of OH radicals which is the photolysis of ambient ozone. Deviations from this correlation in the morning and evening hours, when the OH concentration is higher than expected from the ozone photolysis, demonstrate the importance of other photochemical HOx production pathways during POPCORN.  相似文献   
993.
Observations of the concentration of several nitrogen containing compounds at five rural Scandinavian sites during March–June 1993 are reported. Total nitrate (NO 3 - + HNO3) and total ammonium (NH 4 + + NH3) were measured by denuder and filter pack. In general the methods agree well. At all sites the particulate fraction dominated, with the largest fraction of NO 3 - and the lowest of NH 4 + at the sites which were closest to the emission sources. The fraction of NO 3 - of total nitrate increased with increasing NO2 concentrations, indicating that the nighttime conversion of NO2 to NO 3 - is an important route of formation for NO 3 - . A positive correlation was found between HNO3 and O3 in June at all sites, while no correlation was found early in the spring. Model calculations were made with a lagrangian boundary layer photooxidant model for the whole period, and compared to the measured concentrations. The calculated ratio between mean observed and modelled daily maximum concentrations of ozone over the measurement period were within +/–10% at all sites. The models ability to describe the daily ozone maximum concentration was satisfactory with an average deviation of 19–22% from the observed concentrations. HNO3 was underestimated by over 50% at all sites except the one closest to the emission sources. The correlation between modelled and observed concentrations was generally best for the sites with shortest transport distance from the sources of emission.  相似文献   
994.
During the field campaign POPCORN (Photo oxidant formation by plant emitted compounds and OH radicals in North-eastern Germany) in Pennewitt (Mecklenburg-Vorpommern, Germany) in August 1994, carbon monoxide and nonmethane hydrocarbons were measured over a large maize field by in-situ gas chromatography. Throughout the campaign CO and NMHC showed, even for a remote rural area, unexpectedly low mixing ratios. Except a few episodes, CO mixing ratios were around 120 ppb. Ethane was the only hydrocarbon showing mixing ratios exceeding 1 ppb. The mixing ratios of all other NMHC ranged between several hundred ppt and the lower limit of detection which was between 20 and 5 ppt depending on the compound. During three frontal passages CO and NMHC mixing ratios increased significantly, while between August 13 and 16, 1994, polar air masses were encountered with CO and NMHC mixing ratios dropping to values which are typical for North Atlantic background air. During this period average CO mixing ratios were 85 ppb and ethane as the most abundant hydrocarbon decreased to 650 ppt. The large-scale meteorological situation is reflected in an unusual frequency distribution of CO. The distribution shows three maxima which can be assigned to the periods of the frontal passages, to the observation of polar air masses and the rest of the campaign. Two-day backward trajectories were calculated in order to obtain information about the origin of the air masses transported to the site. The observed NMHC and CO data can be attributed to the origin of the air masses and the air mass trajectories. NMHC and CO mixing ratios were well correlated indicating that these compounds originated from similar mostly anthropogenic sources. An exception was isoprene which showed no correlation with CO. With values below 100 ppt the mixing ratio of isoprene, which is emitted by terrestrial vegetation, was also unexpectedly low during the first half of the campaign although the maximum temperatures were around 35°C.  相似文献   
995.
Kornerupine, (□,Fe,Mg)(Mg,Fe,Al)9(Si,Al,B)5 (O,OH,F)22, has been reported with talc in rocks from six localities worldwide, but only at Chilapila Hill in the Lufilian Arc, Zambia do textural relationships imply that kornerupine (Krn) equilibrated with talc (Tlc) during a prograde metamorphic event at T≈ 640 °C, P≈ 13 kbar; a prograde Krn + Tlc assemblage has also been reported from Mautia Hill, Tanzania (P ≤ 13 kbar). In order to estimate possible constraints on the stability range for the kornerupine + talc paragenesis in nature, we constructed a P-T diagram in the model system MgO-Al2O3-SiO2-H2O (MASH) for seven phases quartz (Qtz), B-free kornerupine sensu stricto, anthophyllite (Ath), chlorite (Chl), cordierite (Crd), kyanite (Ky), and talc. The minimum pressure for Krn + Tlc + Ky stability in MASH is close to that for Ky + Tlc stability, i.e., 6–8 kbar, at T≤ 780 °C. However, in the natural system, B2O3 and Na2O are major constituents in Krn and orthoamphibole (Oam), respectively, and dravitic tourmaline (Tur) is widespread. The critical assemblage alternative to Krn + Tlc in nature is Tur + Oam. The upper pressure limit of Tur + Ath is determined by the upper pressure for anthophyllite: 7.7–10.5 kbar at 682–794 °C in the MgO-SiO2-H2O system (Chernosky et al. 1985, Am Mineral 70:223–236), and is undoubtedly higher in the presence of Na2O, CaO, and Al2O3. At three of the six localities, talc is a retrograde phase; nonetheless, it possibly equilibrated with kornerupine on the retrograde path or during a later metamorphic event at P-T conditions appropriate for Ky + Tlc. At the sixth locality (Mulvoj, southwestern Pamir Mountains, Tajikistan), Krn is found in the same thin section as talc and kyanite and all three minerals formed during a prograde metamorphic event at T≥ 650 °C, P near 7 kbar. However, Krn is restricted to a lens 4 to 6 mm thick of phlogopite + anthophyllite + Tur and it does not touch either talc or kyanite. A reaction relating the Mulvoj and Chilapila Hill (Krn + Tlc + Ky + Qtz + Tur) parageneses is calculated from compositions in the Mulvoj rock to be 0.40Tur + 2.55Ath + 1.33H2O + 0.27F = Krn + 2.16Tlc + 0.36B2O3 + 0.02Rutile + 0.19Na2O + 0.17CaO. Given the difference in metamorphic pressures estimated for Mulvoj and Chilapila Hill, Krn + Tlc is inferred to be favored by increasing pressure as well as by low Na2O and CaO contents. Some FeO, F, Fe2O3, and BeO are present in measurable amounts in at least one of the phases in the Mulvoj and Chilapila Hill whiteschists (e.g., Krn contains 0.24–0.67 wt% BeO), but the effect of these constituents is subordinate to that of Na2O, CaO and B2O3. The Krn + Tlc could be a more important assemblage in B-bearing whiteschists than has been reported to date, particularly at pressures where orthoamphibole is no longer stable. Received: 21 April 1997 / Accepted: 13 October 1997  相似文献   
996.
U-series activity ratios, Sr-Nd-Pb isotopic ratios and major and trace element compositions have been determined on young basalts (<10 ka) and trachytes from the volcano Emuruangogolak in the Kenya Rift Valley. The basalts are mildly alkaline and are associated with small volumes of hawaiite. The mafic rocks are characterised by high (230Th/232Th) (≥1.06) with low (238U/230Th) ratios (≤0.72). They have variable incompatible trace element ratios (e.g. Zr/Nb, Ba/Zr), indicating that they represent a number of magmatic lineages. The trachytes, which comprise both comenditic and pantelleritic varieties, have significantly lower (230Th/232Th) ratios than the basalts, with clear differences between pantelleritic and comenditic types. The (238U/230Th) ratios in the pantellerites range from less, to greater, than 1. The variations in composition and isotopic diversity must represent different sources for the trachytes. Internal isochrons for the trachytes give U-Th ages of 14 to 40 ka, similar to single crystal laser fusion 40Ar/39Ar ages from sanidine phenocrysts (16–38 ka) for the same rocks. Post-crystallisation residence times of the trachytes were very short, implying relatively rapid movement of trachyte from magma chamber to the surface. Variations in the initial (230Th/232Th)0 ratios (0.69–1.14) of both basalts and trachytes indicate that Emuruangogolak has erupted a large range of isotopically diverse magmas over a very short period of time (38 ka), from conduits closely spaced around the summit of the volcano. Received: 29 May 1996 / Accepted: 24 November 1997  相似文献   
997.
Hydrous pyrolysis experiments were performed on the Ghareb Formation (Upper Cretaceous, Jordan), a carbonate- and organic-rich (TOC 19.6%) source rock, using a temperature range of 200 to 360°C (72 h). The original sediment contains only low amounts of carbazoles, (maximum 2.2 μg/g bitumen for 1-methylcarbazole). With increasing thermal maturation, intense generation begins at temperatures only in excess of 300°C, reaching a maximum at 360°C. Likewise, during natural maturation, generation occurs at later stages of maturity (e.g. for Tithonian source rocks at >0.81% Rr and for Posidonia Shale at >0.88% Rr). Some isomeric changes during hydrous pyrolysis do not resemble those in nature whereas others do. The relative abundances of selected C1- and C2-alkylcarbazoles on ternary diagrams reveal differences, whereas the benzo[a]carbazole/benzo[a]carbazole+benzo[c]carbazole ratio is closely similar. The latter result supports the contention that maturation plays a key role in controlling carbazole distributions in source rocks. However, the results for alkylcarbazoles, especially the C2-carbazoles, are not easy to interpret.  相似文献   
998.
An immature sulfur-rich marl from the Gessosso-solfifera Formation of the Vena del Gesso Basin (Messinian, Italy) has been subjected to hydrous pyrolysis (160 to 330°C) to simulate maturation under natural conditions. The kerogen of the unheated and heated samples was isolated and the hydrocarbons released by selective chemical degradation (Li/EtNH2 and HI/LiAlH4) were analysed to allow a study of the fate of sulfur- and oxygen-bound species with increasing temperature. The residues from the chemical treatments were also subjected to pyrolysis–GC to follow structural changes in the kerogens. In general, with increasing hydrous pyrolysis temperature, the amounts of sulfide- and ether-bound components in the kerogen decreased significantly. At the temperature at which the generation of expelled oil began (260°C), almost all of the bound components initially present in the unheated sample were released from the kerogen. Comparison with an earlier study of the extractable organic matter using a similar approach and the same samples provides molecular evidence that, with increasing maturation, solvent-soluble macromolecular material was initially released from the kerogen, notably as a result of thermal cleavage of weak carbon–heteroatom bonds (sulfide, ester, ether) even at temperatures as low as 220°C. This solvent-soluble macromolecular material then underwent thermal cleavage to generate hydrocarbons at higher temperatures. This early generation of bitumen may explain the presence of unusually high amounts of extractable organic matter of macromolecular nature in very immature S-rich sediments.  相似文献   
999.
The main driving force behind Al/Si ordering in tetrahedral framework aluminosilicates is nearest-neighbour Al/Al avoidance. Computer simulation is used to explore the direct consequences of such Al/Al avoidance. The main result is that the order-disorder transition temperature T c falls dramatically as the concentration x of Al in the structure is reduced, and if the only interactions are those associated with nearest-neighbour Al/Al avoidance, T c becomes zero for x less than some critical value x c , where x c =0.31 for the feldspar framework and x c =0.34 for cordierite. Also a large degree of short range order is found above T c . Both results differ radically from the standard Bragg-Williams model. Plots of entropy and enthalpy of ordering are given as functions of x and T, which may be used to interpret experimental data or for extrapolation into ranges of x and T inaccessible to experiment. Received: 14 May 1997 / Revised, accepted: 2 June 1997  相似文献   
1000.
This study is motivated by the possibility of determining the large-body meteoroid flux at the orbit of Venus. Towards this end, we attempt to estimate the times at which enhanced meteoric activity might be observed in the planet's atmosphere. While a number of meteoroid streams are identified as satisfying common Earth and Venus intercept conditions, it is not clear from the Earth-observed data if these streams contain large-body meteoroids. A subset of the Taurid Complex objects may produce fireball-rich meteor showers on Venus. A total of 11 short-period, periodic comets and 46 near-Earth asteroids approach the orbit of Venus to within 0.1 au, and these objects may have associated meteoroid streams. Comets 27P/Crommelin and 7P/Pons–Winnecke are identified as candidate parents to possible periodic meteor showers at the orbit of Venus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号