首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   18篇
  国内免费   5篇
测绘学   7篇
大气科学   42篇
地球物理   137篇
地质学   80篇
海洋学   17篇
天文学   26篇
自然地理   17篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   6篇
  2018年   10篇
  2017年   4篇
  2016年   12篇
  2015年   9篇
  2014年   13篇
  2013年   23篇
  2012年   11篇
  2011年   11篇
  2010年   19篇
  2009年   18篇
  2008年   20篇
  2007年   16篇
  2006年   17篇
  2005年   3篇
  2004年   12篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   14篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   5篇
  1976年   2篇
  1974年   2篇
  1970年   1篇
  1954年   1篇
  1953年   1篇
排序方式: 共有326条查询结果,搜索用时 187 毫秒
321.
Due to the dramatic increase in the global mean surface temperature (GMST) during the twentieth century, the climate science community has endeavored to determine which mechanisms are responsible for global warming. By analyzing a millennium simulation (the period of 1000–1990 ad) of a global climate model and global climate proxy network dataset, we estimate the contribution of solar and greenhouse gas forcings on the increase in GMST during the present warm period (1891–1990 ad). Linear regression analysis reveals that both solar and greenhouse gas forcing considerably explain the increase in global mean temperature during the present warm period, respectively, in the global climate model. Using the global climate proxy network dataset, on the other hand, statistical approach suggests that the contribution of greenhouse gas forcing is slightly larger than that of solar forcing to the increase in global mean temperature during the present warm period. Overall, our result indicates that the solar forcing as well as the anthropogenic greenhouse gas forcing plays an important role to increase the global mean temperature during the present warm period.  相似文献   
322.
323.
324.
In order to examine the changes in Walker circulation over the recent decades, we analyzed the sea surface temperature (SST), deep convective activities, upper tropospheric moistening, sea level pressure (SLP), and effective wind in the boundary layer over the 30-year period of 1979–2008. The analysis showed that the eastern tropical Pacific has undergone cooling while the western Pacific has undergone warming over the past three decades, causing an increase in the east–west SST gradient. It is indicated that the tropical atmosphere should have responded to these SST changes; increased deep convective activities and associated upper tropospheric moistening over the western Pacific ascending region, increased SLP over the eastern Pacific descending region in contrast to decreased SLP over the western Pacific ascending region, and enhanced easterly wind in the boundary layer in response to the SLP change. These variations, recognized from different data sets, occur in tandem with each other, strongly supporting the intensified Walker circulation over the tropical Pacific Ocean. Since the SST trend was attributed to more frequent occurrences of central Pacific-type El Niño in recent decades, it is suggested that the decadal variation of El Niño caused the intensified Walker circulation over the past 30 years. An analysis of current climate models shows that model results deviate greatly from the observed intensified Walker circulation. The uncertainties in the current climate models may be due to the natural variability dominating the forced signal over the tropical Pacific during the last three decades in the twentieth century climate scenario runs by CMIP3 CGCMs.  相似文献   
325.
The Pacific decadal oscillation (PDO) is defined as the first empirical orthogonal function (EOF) mode of the North Pacific sea surface temperature anomalies. In this study, we reconstructed the PDO using the first-order autoregressive model from various climate indices representing the El Niño-Southern oscillation (ENSO), Aleutian Low (AL), sea surface height (SSH), and thermocline depth over the Kuroshio–Oyashio extension (KOE) region. The climate indices were obtained from observation and twentieth-century simulations of the eight coupled general circulation models (CGCMs) participating in the Climate Model Intercomparison Project Phase III (CMIP3). In this manner, we quantitatively assessed the major climate components generating the PDO using observation and models. Based on observations, the PDO pattern in the central to eastern North Pacific was accurately reconstructed by the AL and ENSO indices, and that in the western North Pacific was best reconstructed by the SSH and thermocline indices. In the CMIP3 CGCMs, the relative contribution of each component to the generation of the PDO varied greatly from model to model, and observations, although the PDO patterns from most of the models were similar to the pattern observed. In the models, the PDO pattern in the eastern and western North Pacific were well reconstructed using the AL and SSH indices, respectively. However, the PDO pattern reconstructed by the ENSO index was quite different from the observed pattern, which was possibly due to the model's common deficiency in simulating the amplitude and location of the ENSO. Furthermore, the differences in the contribution of the KOE thermocline index between the observed pattern and most of the models indicated that the PDO pattern associated with ocean wave dynamics is not properly simulated by most models. Therefore, the virtually well simulated PDO pattern by models is a result of physically inconsistent processes.  相似文献   
326.
Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan   总被引:2,自引:0,他引:2  
In order to understand gas hydrate related seafloor features in the near shore area off SW Taiwan, a deep-towed sidescan sonar and sub-bottom profiler survey was conducted in 2007. Three profiles of high-resolution sub-bottom profiler reveal the existence of five gas seeps (G96, GS1, GS2, GS3 and GS4) and one pockmark (PM) in the study area. Gas seeps and pockmark PM are shown in lines A and C, while no gas venting feature is observed along line B. This is the first time that a gas-hydrate related pockmark structure has been imaged off SW Taiwan. The relatively high backscatter intensity in our sidescan sonar images indicates the existence of authigenic carbonates or chemosynthetic communities on the seafloor. More than 2,000 seafloor photos obtained by a deep-towed camera (TowCam) system confirm the relatively high backscatter intensity of sidescan sonar images related to bacteria mats and authigenic carbonates formation at gas seep G96 and pockmark PM areas. Water column gas flares are observed in sidescan sonar images along lines A and C. Likewise, EK500 echo sounder images display the gas plumes above gas seep G96, pockmark PM and gas seep GS1; the gas plumes heights reach about 150, 100 and 20 m from seafloor, respectively. Based on multichannel seismic reflection (MCS) profiles, an anticline structure trending NNE-SSW is found beneath gas seep G96, pockmark PM and gas seep GS2. It implies that the gas venting features are related to the anticline structure. A thermal fluid may migrate from the anticline structure to the ridge crest, then rises up to the seafloor along faults or fissures. The seafloor characteristics indicate that the gas seep G96 area may be in a transitional stage from the first to second stage of a gas seep self-sealing process, while the pockmark PM area is from the second to final stage. In the pockmark PM area, gas venting is observed at eastern flank but not at the bottom while authigenic carbonates are present underneath the pockmark. It implies that the fluid migration pathways could have been clogged by carbonates at the bottom and the current pathway has shifted to the eastern flank of the pockmark during the gas seep self-sealing process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号