首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   14篇
  国内免费   4篇
测绘学   9篇
大气科学   4篇
地球物理   72篇
地质学   109篇
海洋学   7篇
天文学   30篇
综合类   8篇
自然地理   13篇
  2023年   2篇
  2022年   4篇
  2021年   9篇
  2020年   11篇
  2019年   11篇
  2018年   17篇
  2017年   20篇
  2016年   27篇
  2015年   11篇
  2014年   19篇
  2013年   28篇
  2012年   13篇
  2011年   19篇
  2010年   8篇
  2009年   7篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有252条查询结果,搜索用时 78 毫秒
201.
Eight seismic profiles from the southwestern Caspian Sea were analyzed to establish the sedimentary environments and depositional history in the South Caspian Basin since Pliocene times. Based on reflection terminations, nine sequence boundaries (S1 to S9) were identified and traced across the study area. Consequently, nine depositional sequences (S1–S9) were defined on the basis of seismic facies analysis. The results suggest a transition from non-marine sedimentation in the Lower Pliocene to marine-dominated conditions in the Upper Pliocene (S1–S4). Marine conditions then continued to the present time; however, several sea-level changes led to the formation of sequences S5 to S9. Although no local sea-level curve is available due to a lack of well data, there is good agreement between the seismic stratigraphy of the study area and a published regional sea-level curve.  相似文献   
202.
Prior to hydrologic modelling, topographic features of a surface are derived, and the surface is divided into sub‐basins. Surface delineation can be described as a procedure, which leads to the quantitative rendition of surface topography. Different approaches have been developed for surface delineation, but most of them may not be applicable to depression‐dominated surfaces. The main objective of this study is to introduce a new depression‐dominated delineation (D‐cubed) method and highlight its unique features by applying it to different topographic surfaces. The D‐cubed method accounts for the hierarchical relationships of depressions and channels by introducing the concept of channel‐based unit (CBU) and its connection with the concept of puddle‐based unit (PBU). This new delineation method implements a set of new algorithms to determine flow directions and accumulations for puddle‐related flats. The D‐cubed method creates a unique cascaded channel‐puddle drainage system based on the channel segmentation algorithm. To demonstrate the capabilities of the D‐cubed method, a small laboratory‐scale surface and 2 natural surfaces in North Dakota were delineated. The results indicated that the new method delineated different surfaces with and without the presence of depressional areas. Stepwise changes in depression storage and ponding area were observed for the 3 selected surfaces. These stepwise changes highlighted the dynamic filling, spilling, and merging processes of depressions, which need to be considered in hydrologic modelling for depression‐dominated areas. Comparisons between the D‐cubed method and other methods emphasized the potential consequences of use of artificial channels through the flats created by the depression‐filling process in the traditional approaches. In contrast, in the D‐cubed method, sub‐basins were further divided into a number of smaller CBUs and PBUs, creating a channel‐puddle drainage network. The testing of the D‐cubed method also demonstrated its applicability to a wide range of digital elevation model resolutions. Consideration of CBUs, PBUs, and their connection provides the opportunity to incorporate the D‐cubed method into different hydrologic models and improve their simulation of topography‐controlled runoff processes, especially for depression‐dominated areas.  相似文献   
203.
There is increasing debate these days on climate change and its possible consequences. Much of this debate has focused in the context of surface water systems. In many arid areas of the world, rainfall is scarce and so is surface runoff. These areas rely heavily on groundwater. The consequences of climate change on groundwater are long term and can be far reaching. One of the more apparent consequences is the increased migration of salt water inland in coastal aquifers. Using two coastal aquifers, one in Egypt and the other in India, this study investigates the effect of likely climate change on sea water intrusion. Three realistic scenarios mimicking climate change are considered. Under these scenarios, the Nile Delta aquifer is found to be more vulnerable to climate change and sea level rise. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
204.
When performing loss assessment of a geographically dispersed building portfolio, the response or loss (fragility or vulnerability) function of any given archetype building is typically considered to be a consistent property of the building itself. On the other hand, recent advances in record selection have shown that the seismic response of a structure is, in general, dependent on the nature of the hazard at the site of interest. This apparent contradiction begs the question: Are building fragility and vulnerability functions independent of site, and if not, what can be done to avoid having to reassess them for each site of interest? In the following, we show that there is a non‐negligible influence of the site, the degree of which depends on the intensity measure adopted for assessment. Employing a single‐period (e.g., first‐mode), spectral acceleration would require careful record selection at each site and result to significant site‐to‐site variability of the fragility or vulnerability function. On the other hand, an intensity measure comprising the geometric mean of multiple spectral accelerations considerably reduces such variability. In tandem with a conditional spectrum record selection that accounts for multiple sites, it can offer a viable approach for incorporating the effect of site dependence into fragility and vulnerability estimates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
205.
In this study, strong ground motion record(SGMR) selection based on Eta(η) as a spectral shape indicator has been investigated as applied to steel braced frame structures. A probabilistic seismic hazard disaggregation analysis for the definition of the target Epsilon(ε) and the target Eta(η) values at different hazard levels is presented, taking into account appropriately selected SGMR's. Fragility curves are developed for different limit states corresponding to three representative models of typical steel braced frames having significant irregularities in plan, by means of a weighted damage index. The results show that spectral shape indicators have an important effect on the predicted median structural capacities, and also that the parameter η is a more robust predictor of damage than searching for records with appropriate ε values.  相似文献   
206.
Ocean Dynamics - Although the different aspects of wave-mud interaction have been studied by many researchers, few studies have been conducted on the effect of solitary wave on the particle...  相似文献   
207.
Bulletin of Earthquake Engineering - Since post-mainshock events following a major earthquake are likely to occur, it is imperative to have an understanding of the functionality status of...  相似文献   
208.
One of the most important factors in optimized design of non-yielding retaining walls like basement walls and bridge abutments is to determine the exact variation of earth pressure acting on such walls. In this paper, the distribution of at rest earth pressure behind a laboratory model of a fixed and rigid retaining wall with a cohesionless dry backfill is measured under the effect of static and repeated loads. The same conditions of the experimental model are then simulated numerically with a two-dimensional finite-difference analysis computer code. For the purpose of model verification, the results of numerical model are compared to the results of the experimental model, which is similar in geometrical and geomechanical properties. Cyclic surcharges with different amplitudes and frequencies are applied in different distances from the wall, and the earth pressure distribution, the resultant force, and its point of application are investigated. The effect of soil and loading parameters on the at rest earth pressure is also evaluated, and a parametric study has been carried out. The results of model show a significant increase in the earth pressure due to cyclic loading compared to static loading, especially in the initial cycles of loading. It indicates that the effect of cycling nature of loading should be essentially taken into account in the design of retaining walls.  相似文献   
209.
How to select a limited number of ground motion records (GMRs) is an important challenge for the non‐linear analysis of structures. Since epsilon (εSa) is an indicator of spectral shape, which has a significant correlation with the non‐linear response of a structure, the selection of GMRs based on the hazard‐related target εSa is a reasonable approach. In this paper, an alternative indicator of spectral shape is proposed, which results in a more reliable prediction of the non‐linear response for the structures with the natural period of 0.25 to 3.0 s. This new parameter, named eta (η), is a linear combination of εSa and the peak ground velocity epsilon (εPGV). It is shown that η, as a non‐linear response predictor, is remarkably more efficient than the well‐known and convenient parameter εSa. The influence of η‐filtration in the collapse analysis of an eight‐story reinforced concrete structure with special moment‐resisting frames was studied. Statistical analysis of the results confirmed that the difference between ε‐filtration and η‐filtration can be very significant at some hazard levels. In the case of this structure, the resulting annual frequency of collapse was found to be lower in the case of η‐based record selection, in comparison with the ε‐based record‐selection approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
210.
Nowadays, there are many new methods for slope stability analysis; including probabilistic methods assessing geotechnical uncertainties to develop safety factors. In this paper, a reliability index analysis for the Sungun copper mine slope stability is evaluated based on three methods of uncertainties consisting Taylor series method, Rosenblueth point estimate method and Monte-Carlo simulation method. Sungun copper mine will be one of the Iran’s biggest mines with final pit’s height of 700 meters. For this study two of its main slopes were assessed, one dipping to the NE (030) and the other to the SE (140). Probability density function of cohesion and angle of friction for the slopes were developed using limit equilibrium methods. These shear strengths were then used to determine the probability density function of safety factor and reliability index using the probabilistic methods. Results of the probabilistic analysis indicate that with ascending values of the uncertainties the reliability index decreases. Furthermore, it was determined that with the Monte Carlo simulation the seed number used has little effect on the reliability index of the safety factor especially with seed numbers in excess of 1200. Variations in the overall reliability index of safety factor were observed between the two slopes and this difference is explained by the differences in complexities of the geology within the cross-section.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号