首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   14篇
  国内免费   5篇
测绘学   9篇
大气科学   4篇
地球物理   72篇
地质学   110篇
海洋学   7篇
天文学   30篇
综合类   7篇
自然地理   13篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   11篇
  2019年   12篇
  2018年   17篇
  2017年   20篇
  2016年   27篇
  2015年   11篇
  2014年   19篇
  2013年   28篇
  2012年   13篇
  2011年   19篇
  2010年   8篇
  2009年   7篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有252条查询结果,搜索用时 222 毫秒
221.
222.
The metamorphic rocks of the Aligudarz-Khonsar region can be divided into nine groups: slate, phyllite, sericite schist, biotite-muscovite schist, garnet schist, garnet-staurolite schist, staurolite schist, mylonitic granite, and marble. In this metamorphic region, four phases of metamorphism can be identified (dynamothermal, thermal, dynamic and retrograde metamorphism) and there are three deformation phases (D1, D2 and D3). Paleozoic pelagic shales experienced prograde metamorphism and polymetamorphism from the greenschist to amphibolite facies along the kyanite geotherm. The metapelites show prograde dynamothermal metamorphism from the greenschist to amphibolite facies. Maximum degree of dynamothermal metamorphism is seen in the Nughan bridge area. Also development of the mylonitic granites in the Nughan bridge area shows that dynamic metamorphism in this area was more intense than in other parts of the AligudarzKhonsar metapelitic zone. The chemical zoning of garnets shows three stages of growth and syn-tectonic formation. With ongoing metamorphism, staurolite appeared, and the rocks reached amphibolite facies, but the degree of metamorphism did not increase past the kyanite zone. Thus, metamorphism of the pelitic sediments occurred at the greenschist to amphibolite facies (kyanite zone). Thermodynamic studies of these rocks indicate that the metapelites in the Aligudarz-Khonsar region formed at 490–550°C and 0.47–5.6 kbar.  相似文献   
223.
224.
225.
226.
227.
Cost and time are the two most important factors conditioning soil surveys. Since these surveys provide basic information for modelling and management activities, new methods are needed to speed the soil-mapping process with limited input data. In this study, the polypedon concept was used to extend the spatial representation of sampled pedons (point data) in order to train artificial neural networks (ANNs) for digital soil mapping (DSM). The input database contained 97 soil profiles belonging to 7 different soil series and 15 digital elevation model (DEM) attributes. Pedons were represented in raster format as one-cell areas. The corresponding polypedons were then spatially represented by neighbouring raster cells (e.g. 2 × 2, … up to 6 × 6 cells). The primary database contained 97 pedons (97 cells) that were extended up to 3492 cells (in the case of 6 × 6-cell regions). This approach employed test and validation areas to calculate the respective accuracies of data interpolation and extrapolation. The results showed increased accuracies in training and interpolation (test area) but a poor level of accuracy in the extrapolation process (validation area). However, the overall precision of all predictions increased considerably. Using only topographic attributes for extrapolation was not sufficient to obtain an accurate soil map. To improve prediction, other soil-forming factors, such as landforms and/or geology, should also be considered as input data in the ANN. The proposed method could help to improve existing soil maps by using DSM results in areas with limited soil data and to save time and money in soil survey work.  相似文献   
228.
Salinity and sodicity of groundwater are the principal water quality concerns in irrigated areas of arid and semi-arid regions. The hydrochemical characteristics and sodicity of groundwater in the Shirin Sou area, western Iran were investigated in this study by chemical analyses of groundwater samples from 49 wells. Chemical analysis of the groundwater showed that the mean concentration of the cations was in the order: Na+ > Ca2+ > Mg2+ > K+, while that for anions was SO3 2− > Cl > HCO3  > NO3 . The most prevalent water type is Na–SO4 followed by water types Na–Cl and Ca–SO4. The chemical evolution of groundwater is primarily controlled by water–rock interactions: mainly weathering of aluminosilicates, dissolution of sulfate minerals, and cation exchange reactions. Sulfate dissolution and pyrite weathering may both contribute to the SO4 2− load of the groundwater. High Na+ concentrations in groundwater participate in ion-exchange processes, resulting in the displacement of base cations into solution and raised concentrations in groundwater. The principal component analysis (PCA) performed on groundwater identified three principal components controlling variability of groundwater chemistry. Electrical conductivity, Ca2+, Mg2+, Na+, SO4 2−, and Cl content were associated in the same component (PC1) (salinity), most likely linked to anthropogenic activities.  相似文献   
229.
In this paper, an advanced formulation of the time-domain, two-dimensional hybrid finite element–boundary element method (FEM/BEM) is presented, and applied to carry out site response analysis of homogeneous and non-homogeneous topographic structures subjected to incident in-plane motions. Seismic responses of half-plane, horizontally layered site, alluvial valley and ridge sections subjected to incident P and SV waves are analyzed in order to demonstrate the applicability and efficiency of the presented method. The numerical results show that hybrid BE/FE methods require smaller time steps than those needed by BEM schemes. They also show that in case of surface irregularities with height to half-width ratio of up to one, the topography effect could be noticeable, if incident waves have wavelengths of less than approximately eight times the width.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号